

HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION

CMAQ/RSTP PROJECT SELECTION PROCESS 2016

T17-07

April 2017

**HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION
VOTING MEMBERS**

Robert A. Crum, Jr. – Executive Director

VOTING MEMBERS:

CHESAPEAKE

Alan P. Krasnoff
Ella P. Ward – Alternate

JAMES CITY COUNTY

Michael Hipple
Vacant - Alternate

SOUTHAMPTON COUNTY

Barry T. Porter
R. Randolph Cook - Alternate

FRANKLIN

Barry Cheatham
Frank Rabil – Alternate

NEWPORT NEWS

McKinley L. Price
Herbert H. Bateman, Jr. - Alternate

SUFFOLK

Linda T. Johnson
Leroy Bennett - Alternate

GLOUCESTER COUNTY

Phillip Bazzani
John C. Meyer, Jr – Alternate

NORFOLK

Kenneth Alexander
Theresa Whibley – Alternate

VIRGINIA BEACH

William D. Sessoms, Jr.,
Louis R. Jones - Alternate

HAMPTON

Donnie Tuck
Jimmy Gray – Alternate

POQUOSON

W. Eugene Hunt, Jr.
Herbert R. Green – Alternate

WILLIAMSBURG

Paul Freiling
D. Scott Foster, Jr. – Alternate

ISLE OF WIGHT COUNTY

Rex Alphin
Rudolph Jefferson -
Alternate

PORPSMOUTH

John Rowe
Paige Cherry – Alternate

YORK COUNTY

Thomas G. Shepperd, Jr.
Sheila Noll - Alternate

MEMBERS OF THE VIRGINIA SENATE

The Honorable Mamie E. Locke
The Honorable Frank W. Wagner

MEMBERS OF THE VIRGINIA HOUSE OF DELEGATES

The Honorable Christopher P. Stolle
The Honorable David Yancey

TRANSPORTATION DISTRICT COMMISSION OF HAMPTON ROADS

William E. Harrell, President/Chief Executive Officer
Ray Amoruso – Alternate

VIRGINIA DEPARTMENT OF TRANSPORTATION

James Utterback, Hampton Roads District Administrator
Dawn Odom – Alternate

VA DEPARTMENT OF RAIL AND PUBLIC TRANSPORTATION

Jennifer Mitchell, Director
Jennifer DeBruhl – Alternate

VIRGINIA PORT AUTHORITY

John Reinhart, CEO/Executive Director
Cathie Vick – Alternate

WILLIAMSBURG AREA TRANSIT AUTHORITY

William Porter, Interim Executive Director
Joshua Moore – Alternate

HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION

NON-VOTING MEMBERS:

CHESAPEAKE

James E. Baker

JAMES CITY COUNTY

Bryan J. Hill

SOUTHAMPTON COUNTY

Michael W. Johnson

FRANKLIN

R. Randy Martin

NEWPORT NEWS

Vacant

SUFFOLK

Patrick Roberts

GLOUCESTER COUNTY

J. Brent Fedors

NORFOLK

Douglas L. Smith

VIRGINIA BEACH

Dave Hansen

HAMPTON

Mary Bunting

POQUOSON

W. Randall Wheeler

WILLIAMSBURG

Marvin Collins

ISLE OF WIGHT COUNTY

Randy Keaton

PORTSMOUTH

Linda Pettis Patton

YORK COUNTY

Neil A. Morgan

FEDERAL HIGHWAY ADMINISTRATION

Jessie Yung, Acting Division Administrator – Virginia Division

FEDERAL TRANSIT ADMINISTRATION

Terry Garcia Crews, Region 3 Administrator

FEDERAL AVIATION ADMINISTRATION

Jeffrey W. Breeden, Airport Planner, Washington Airports District Office

VIRGINIA DEPARTMENT OF AVIATION

Randall P. Burdette, Director

PENINSULA AIRPORT COMMISSION

Sanford Wanner, Interim Executive Director

NORFOLK AIRPORT AUTHORITY

Robert S. Bowen, Executive Director

CITIZEN TRANSPORTATION ADVISORY COMMITTEE

Gregory Edwards, Chair

FREIGHT TRANSPORTATION ADVISORY COMMITTEE

Arthur W. Moye, Jr., Co-Chair (Nonvoting Board Member)

Delegate Christopher P. Stolle, Co-Chair (Voting Board Member)

MILITARY LIAISONS

Michael Moore, Captain, U.S. Navy

Dean Vanderley, Captain, U.S. Navy - Alternate

Rick Wester, Captain, U.S. Coast Guard

William S. Galbraith, Colonel, Langley-Eustis

INVITED PARTICIPANT

John Malbon, CTB

REPORT DOCUMENTATION

TITLE

HRTPO CMAQ/RSTP Project Selection Process
2016

REPORT DATE

April 2017

GRANT/SPONSORING AGENCY

FHWA/FTA/VDOT/DRPT/LOCAL FUNDS

PROJECT MANAGER

Michael S. Kimbrel

ORGANIZATION NAME,**ADDRESS AND TELEPHONE**

Hampton Roads Transportation
Planning Organization
723 Woodlake Drive
Chesapeake, Virginia 23320
(757) 420-8300

<http://www.hrtpo.org>

PROJECT STAFF

Robert B. Case, P.E., PhD
Keith Nichols P.E.

ABSTRACT

This report summarizes the 2016 selection process for projects to be funded under the Congestion Mitigation and Air Quality Improvement Program (CMAQ) and Regional Surface Transportation Program (RSTP). As a result of the 2016 CMAQ/RSTP Project Selection Process, selected projects received allocations of CMAQ or RSTP funds for Fiscal Year 2023.

ACKNOWLEDGMENTS

This report was prepared by the Hampton Roads Transportation Planning Organization (HRTPO) in cooperation with the U.S. Department of Transportation (USDOT), the Federal Highway Administration (FHWA), the Federal Transit Administration (FTA), the Virginia Department of Transportation (VDOT), the Virginia Department of Rail and Public Transportation (DRPT), and the local jurisdictions and transit agencies within the Hampton Roads metropolitan planning area. The contents of this report reflect the views of the HRTPO. The HRTPO staff is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the FHWA, FTA, VDOT, or DRPT. This report does not constitute a standard, specification, or regulation. FHWA, FTA, VDOT, or DRPT acceptance of this report as evidence of fulfillment of the objectives of this task does not constitute endorsement/approval of the need for any recommended improvements nor does it constitute approval of their location and design or a commitment to fund any such improvements. Additional project level environmental impact assessments and/or studies of alternatives may be necessary.

REPORT PRODUCTION STAFF

Robert A. Crum, Jr.	Executive Director
Camelia Ravanbakht, PhD	Deputy Executive Director
Michael S. Kimbrel	Principal Transportation Engineer
John V. Mihaly	Transportation Analyst II
Kathlene Grauberger	Transportation Planner
Michael R. Long	General Services Manager
Christopher Vaigneur	Assistant General Services Manager

NON-DISCRIMINATION

The HRTPO assures that no person shall, on the ground of race, color, national origin, handicap, sex, age, or income status as provided by Title VI of the Civil Rights Act of 1964 and subsequent authorities, be excluded from participation in, be denied the benefits of, or be otherwise subject to discrimination under any program or activity. The HRTPO Title VI Plan provides this assurance, information about HRTPO responsibilities, and a Discrimination Complaint Form.

This Page Intentionally Left Blank

HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION CMAQ/RSTP PROJECT SELECTION PROCESS

2016

*This report was included in the Unified Planning Work Program
for Fiscal Year 2017, which was approved by the Board of the
Hampton Roads Transportation Planning Organization
on May 19, 2016.*

PREPARED BY:

APRIL 2017

T17- 07

This Page Intentionally Left Blank

TABLE OF CONTENTS

Section I – Executive Summary	1
CMAQ Project Selection and Funding Allocations	2
RSTP Project Selection and Funding Allocations	10
Section II - Background	17
Introduction.....	18
Project Selection Process	19
Public Participation	20
Section III – CMAQ Project Selection	21
Section IV – RSTP Project Selection	27
Section V – Appendices	
Appendix A: Project Selection Worksheets: CMAQ Projects	34
Appendix B: Project Selection Worksheets: RSTP Projects	55
Appendix C: Project Ideas Submitted by the Public.....	66

LIST OF MAPS AND TABLES

Map 1 Projects Selected for CMAQ Allocations	9
Map 2 Projects Selected for RSTP Allocations	15
Table 1 2016 CMAQ New Candidate Projects.....	23
Table 2 2016 CMAQ New Candidate Projects in Ranked Order.....	24
Table 3 FY-2023 Allocations to New and Previously Approved CMAQ Projects	25
Table 4 2016 RSTP New Candidate Projects.....	30
Table 5 2016 RSTP New Candidate Projects in Ranked Order.....	31
Table 6 FY-2023 Allocations to New & Previously Approved RSTP Projects	32

REPORT ORGANIZATION

This report has been organized into five sections:

Section I – Executive Summary

The Executive Summary briefly describes the CMAQ and RSTP projects selected to receive available FY 2023 CMAQ and RSTP funds.

Section II – Background

The Background section describes the HRTPO CMAQ/RSTP project selection process and associated public participation activities.

Section III – CMAQ Project Selection

The CMAQ Project Selection section describes the process by which projects were selected to receive allocations of CMAQ funds.

Section IV – RSTP Project Selection

The RSTP Project Selection section describes the process by which projects were selected to receive allocations of RSTP funds.

Section V – Appendices

The appendices of this report include the detailed worksheets used in the analysis of each of the candidate projects submitted by member localities/agencies, as well as project ideas submitted by the public.

This Page Intentionally Left Blank

Section I

Executive Summary

EXECUTIVE SUMMARY

As the metropolitan planning organization (MPO) for the Hampton Roads area, the Hampton Roads Transportation Planning Organization (HRTPO) is responsible for project selection and allocation of funds under two federal funding programs – the Congestion Mitigation and Air Quality Improvement Program (CMAQ) and the Regional Surface Transportation Program (RSTP). The process used by the HRTPO to select projects to receive funds from these two programs is referred to as the CMAQ/RSTP Project Selection Process. The project selection process is conducted annually, normally beginning in July and running through December.

This report summarizes the work of selecting CMAQ and RSTP projects during the 2016 CMAQ/RSTP Project Selection Process. Selected projects received allocations of CMAQ or RSTP funds for Fiscal Year (FY) 2023.

CMAQ PROJECT SELECTION AND FUNDING ALLOCATIONS

During the November 17, 2016 meeting, the HRTPO Board approved the following action regarding CMAQ funding for FY 2023:

- Fifteen new CMAQ projects were selected to receive a total of \$6.8 million in FY 2023 allocations.
- Five previously approved CMAQ projects were selected to receive a total of \$7.4 million in FY 2023 allocations.

The approved CMAQ projects are summarized below.

Allocations to Previously Approved CMAQ Projects

1. **Bus Vehicle Replacement (148) - (UPC# T16054) - HRT**

- The project entails purchasing (29, 35, and 40 foot) buses to replace similar buses that have reached the end of their useful life. The new buses will have improved fuel economy and performance, lower operating costs, and lower emissions than the buses they will replace.
- Allocated \$5,740,392 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$46,811,705

2. **Suffolk Traffic Operations Center - (UPC# 108982) - Suffolk**

- To design and construct a Traffic Operation Center for the City of Suffolk at 800 Carolina Road that will house all command and control infrastructure for all ITS functions. The city recently constructed a new Public Works Operations Center that includes physical space in the building to house this center. The project will make minor modifications to the building HVAC and electrical systems to fully support this center. It will also install all ITS Equipment necessary to fully manage the city's traffic management assets and allow for communications with VDOT, other regional partners, and city emergency service staff. It will be designed and constructed in conformance with all applicable city, state and national ITS standards. The city will be contributing in-kind value of \$700,000 in building cost that will house this center.

- Allocated \$750,000 in FY 2023 CMAQ funds to fully fund the project.

- Total FY 2023 and future CMAQ funding request was revised from \$2,000,000 to \$750,000 per a request from the locality. The locality identified another funding source to cover the remainder of the project funding request.

3. Bus Shelters and Pedestrian Improvements - (UPC# T17893) - Norfolk

- The project entails constructing a total of 72 new bus shelters to replace damaged or old shelters that are beyond their useful life. The project includes the collection and confirmation of ridership information to confirm bus shelter locations, installation of concrete pads, ADA compliant access, appropriate street lighting, shelter fabrication and installation, trash receptacles, seating areas, bike racks, and underground utility surveys. Shelters for the Ferry system would be considered in the project as well.
- Allocated \$220,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$370,000

4. York County - Southeast - Demonstration Route - (UPC# T17890) - WATA

- The project entails developing a route to provide a connection point between WATA's current service and Hampton Roads Transit (HRT). The new transit service would afford customers access to a variety of employment, educational, community service, and business locations. The project includes the purchase and installation of four new bus shelters and signage along the route.
- Allocated \$471,666 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$966,840

5. Suffolk Citywide Signal Timings - (UPC# T17980) - Suffolk

- The project entails developing new signal timings for corridors in need of updated coordinated signal timing plans in the City of Suffolk. To obtain optimal timings, traffic data will be collected and analyzed using the latest version of Synchro software, from which improved signal timings will be developed. Once the new coordinated timings are deployed, the City will focus on updating vehicle and pedestrian clearance intervals, optimizing minimum and maximum split times, and intersection offsets for two-way vehicle progression. For isolated intersections that do not warrant full coordinated signal timing plans, an analysis of minimum and maximum times and evaluation of clearance intervals will be performed. The city's IQ Central signal system database interfaces directly with Synchro for direct system monitoring and timing plan manipulation which will be used going forward.
- Allocated \$230,000 in FY 2023 CMAQ funds to fully fund the project.

New CMAQ Projects

1. Chesapeake Signal System - Phase 4 -(ID# CH1CM) - Chesapeake

- The project entails a citywide upgrade of the traffic signal system, central system operations, and local intersection capabilities to allow deployment of state of the practice functional operations such as flashing yellow deployment along with interagency coordination with neighboring municipalities and VDOT.
- Allocated \$80,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$500,000

2. **Portsmouth Citywide Signal Timing - Phase 1 -(ID# PR1CM) - Portsmouth**

- This project entails analysis of existing and development of new signal timings for strategic corridors in the City of Portsmouth. To obtain optimal timings, traffic data will be collected and analyzed using the latest version of Synchro software, from which improved signal timings will be developed. The City is seeking to deploy a more systematic method of optimizing all signals within the City on a 4-year cycle. This is CMAQ application is for Phase 1, which these corridors were last retimed in 2012.
- Allocated \$120,000 in FY 2023 CMAQ funds to fully fund the project.

3. **Citywide Signal System Progression -(ID# NN1CM) - Newport News**

- This project entails the procurement and installation of hardware and software components for the City's Centralized Signal System. These include but are not limited to items that maintain and extend the system's capabilities and create efficiency improvements for internal traffic monitoring, counting, and analytics; automated traffic responsive and adaptive implementation, as well as providing connectivity to vehicles and other road users.
- Allocated \$350,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$1,250,000

4. **Bus Purchase Replacement-(ID# WA3CM) - WATA**

- This project entails the replacement of six (6) 35' low sulfur diesel buses. The fleet in need of replacement includes the WATA 2008 series of New Flyer buses. The useful life of these buses per the FTA Circular 5010.1D is 12 years or 500,000 miles. The average odometer reading, as of today, on these buses is 420,500.
- Allocated \$3,142,710 in FY 2023 CMAQ funds to fully fund the project.

5. **Citywide Signal System Upgrade - (ID# SF3CM) - Suffolk**

- This project entails upgrading 21 signals outside of downtown Suffolk from TS-1 standard cabinets without system connectivity to TS-2 cabinets. Fiber optics or cellular will be installed to provide for network connectivity.
- Allocated \$150,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$2,650,000

6. **Downtown Signal System Upgrade-(ID# SF1CM) - Suffolk**

- This project entails upgrading 27 signals in downtown Suffolk from TS-1 standard cabinets without system connectivity to TS-2 cabinets. Fiber optics or cellular will be installed to provide for network connectivity.
- Allocated \$150,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$1,650,000

7. **Expansion of Bus Shelters-(ID# WA2CM) - WATA**

- The proposed project includes bus stop infrastructure improvements for the construction of twelve new transit bus shelters. WATA currently has 320 stops with 36 shelters within the service area. The addition of 12 new shelters will provide 15% coverage to the stops. Improvements throughout WATA's service area will work to

enhance safety and manage congestion through the implementation of improved convenience and promote a healthy environment. Implementation of the installation of 12 additional bus shelters is consistent with the Comprehensive Plans of the region's jurisdictions and the 2040 Long Range Transportation Plan.

- Allocated \$117,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$234,000

8. Downtown Railroad Warning System-(ID# SF2CM) - Suffolk

- The project entails the installation of an advance warning system in downtown Suffolk, to warn of approaching and crossing trains on the CSX mainline rail crossing of North Main Street and provide an opportunity for vehicular traffic to use alternate routes around the crossing to include nearby bridges.
- Allocated \$150,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$650,000

9. Battlefield Blvd/Kempsville Road/Great Bridge Blvd Intersection Improvements-(ID# CH2CM) - Chesapeake

- This project entails the implementation of cost effective infrastructure improvements needed to provide improved levels of service. The improvements to the intersection of Battlefield Boulevard, Kempsville Road, and Great Bridge Boulevard will add an additional eastbound lane along Great Bridge Boulevard along with an southbound receiving lane that will enhance the signal operations. In addition, left-turn lanes will be extended along the northbound and westbound directions to allow better lane utilization, which in turn will provide better green time efficiency. This project will have right-of-way impacts on to two properties and will require relocating minimal utilities along the southwest corner of Great Bridge Boulevard. The project will also require signal modification to incorporate the additional second eastbound through lane, channelized right-turn lane to southbound Battlefield Boulevard as well as revised pedestrian facilities to include sidewalks, crosswalks and pedestrian actuation.
- Allocated \$550,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$1,050,000

10. Expanded Marine Highway Barge Service-(ID# VP1CM) - VPA

- The project entails supporting the expanded Marine Highway Barge Service as The Port of Virginia seeks financial support to operate a larger barge with additional capacity and the ability to remove an increased number of trucks from roadways in Hampton Roads.
- Allocated \$543,620 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$4,543,620

11. Pedestrian Improvements on Route 1208 (Greate Road)-(ID# GL1CM) - Gloucester County

- This project entails pedestrian facility improvements on Rte. 1208 (Greate Road) and adjacent side roads connecting to sidewalks currently being planned along Route 17 northbound to provide safe, functional pedestrian network that, in conjunction with the existing road network, internally connects the neighborhoods to existing and planned

commercial, community and recreational destinations and amenities within the designated Gloucester Point-Hayes Village (Urban) Development Area.

- Allocated \$65,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$500,000

12. Dam Neck Road/Holland Road Intersection Improvements-(ID# VB1CM) – Virginia Beach

- The project entails the addition of a second left turn lane from westbound Dam Neck Road to southbound Holland Road. The improved geometry will also require reconstruction of the existing refuge island on the northeast corner and storm water adjustments. Two new mast arm poles with pedestrian accommodations will be constructed to accommodate the new lane configuration. The addition of drainage structures and storm water management facilities will be included as required. The project will also incorporate utility coordination/relocation as needed. Signal retiming will be necessary once construction is complete.
- Allocated \$430,000 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$2,190,000

13. Tabbs Lane Sidewalk Infill-(ID# NN2CM) – Newport News

- This project entails improving pedestrian facilities along Tabbs Lane which is an unimproved local collector with open ditches and limited existing pedestrian accommodations. Developments on each end of the project area have installed sidewalks. This project's scope will link these sidewalks to bridge the gap connecting the surrounding high density residential parcels to Warwick Boulevard, the adjacent major arterial with local bus service.
- Allocated \$238,000 in FY 2023 CMAQ funds. The FY 2023 funding of \$238,000 was subsequently removed as the project was deemed ineligible to receive federal funding. The proposed project location was on a roadway with a functional classification of urban local.

14. Crittenden Road/Route 17 Intersection Realignment-(ID# SF4CM) – Suffolk

- Project will realign the existing intersection of Crittenden Road and Route 17 with Clubhouse Road and Route 17. Traffic signal, turn lanes, and storm water management features will be included.
- Allocated \$372,530 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$4,872,530

15. New Demonstration Routes – Upper York County/Kent County Connector-(ID# WA1CM) – WATA

- The project entails improving transit to an unserved area of James City County and provides a connection point between Barhamsville, Eltham, New Kent County, and Providence Forge and current service of the Williamsburg Area Transit Authority providing service to the north-western part of James City County. The planned route will provide service to underserved areas in James City County and unserved areas by regular scheduled transit service in Barhamsville, Eltham, New Kent, and Providence

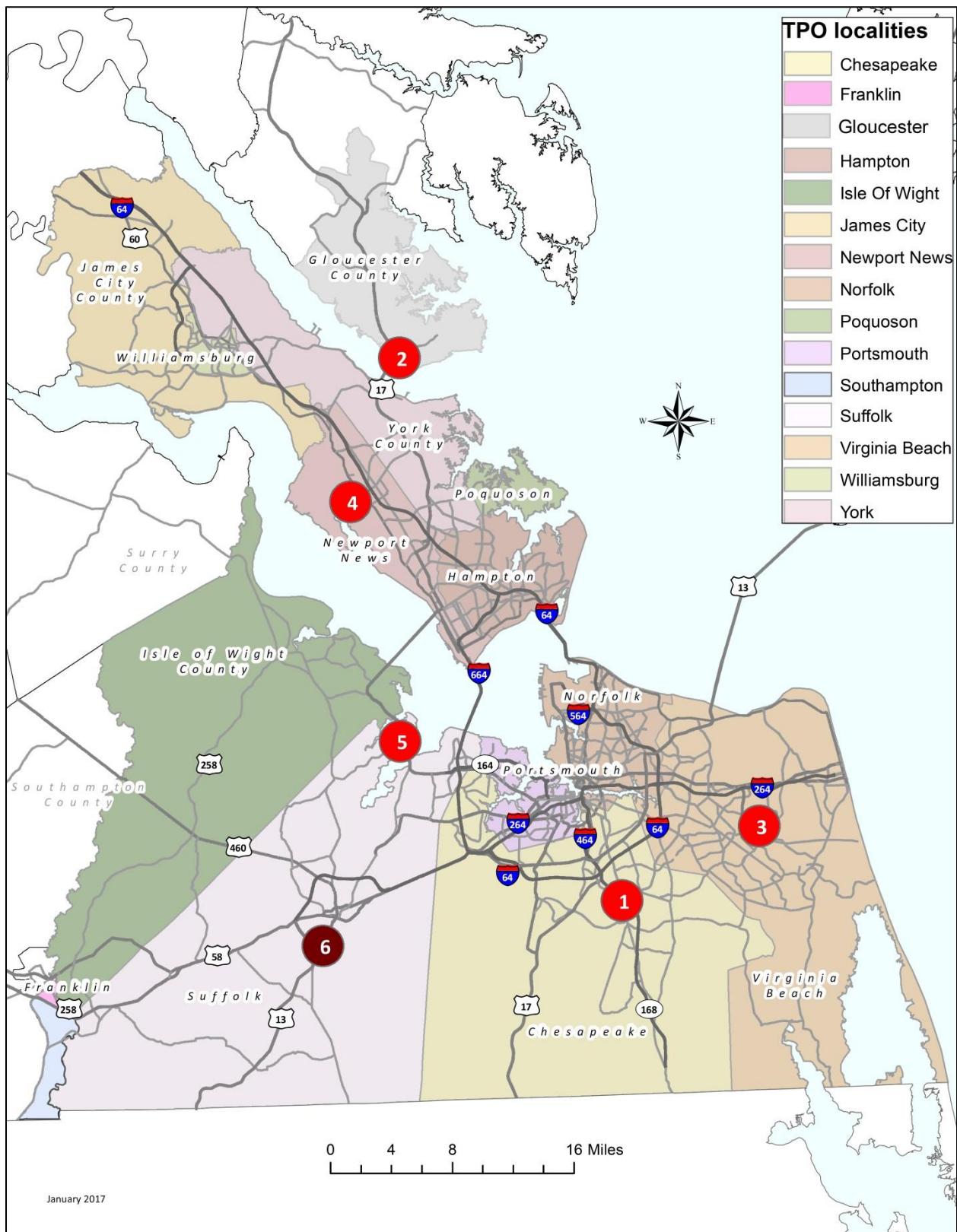
Forge. This need for service expansion is also documented in the Comprehensive Plan of York County (see New Kent County Comprehensive Plan – Adopted October 9, 2012 – Goal 8).

- Allocated \$372,530 in FY 2023 CMAQ funds.
- Total FY 2023 and future CMAQ funding request: \$1,164,921

Projects Selected for CMAQ Allocations

Mapped Projects

- 1 Battlefield Blvd/Kempsville Rd/Great Bridge Blvd Intersection Improvements - Chesapeake
- 2 Pedestrian Improvements on Route 1208 (Greate Road) - Gloucester County
- 3 Dam Neck Road/Holland Road Intersection Improvements - Virginia Beach
- 4 Tabb Lane Sidewalk Infill - Newport News
- 5 Crittendon Road/Route 17 Intersection Realignment - Suffolk
- 6 Suffolk Trafic Operations Center - Suffolk


Unmapped Projects

- 7 Bus Vehicle Replacement (148) - HRT
- 8 Bus Shelters and Pedestrian Improvements - Norfolk
- 9 York County - Southeast - Demonstration Route - WATA
- 10 Suffolk Citywide Signal Timings - Suffolk
- 11 Chesapeake Signal System - Phase 4 - Chesapeake
- 12 Portsmouth Citywide Signal Timing - Phase 2 - Portsmouth
- 13 Citywide Signal System Progression - Newport News
- 14 Bus Purchase Replacement (6) - WATA
- 15 Citywide Signal System Upgrade - Suffolk
- 16 Downtown Signal System Upgrade- Suffolk
- 17 Expansion of Bus Shelters - WATA
- 18 Downtown Railroad Warning System - Suffolk
- 19 Expanded Marine Highway Barge Service - VPA
- 20 New Demonstration Routes - Upper York County/Kent County Connector - WATA

Project Selection Status

- Previously Approved CMAQ Projects
- New CMAQ Projects

Map 1 | Projects Selected for CMAQ Allocations

RSTP PROJECT SELECTION AND FUNDING ALLOCATIONS

During the November 17, 2016 meeting, the HRTPO Board approved the following actions regarding RSTP funding for FY 2023:

- Four new RSTP projects were selected to receive a total of \$4.3 million in FY 2023 allocations.
- Six previously approved RSTP projects were selected to receive a total of \$29.9 million in FY 2023 allocations.

The approved RSTP projects are summarized below.

Allocations to Previously Approved RSTP Projects

1. **Naval Station Norfolk Transit Extension Study FEIS/PE - (UPC# T9093) - HRT**
 - This project entails the continued funding of this transportation demand management (TDM) program.
 - Allocated \$6,000,000 in FY 2023 RSTP funds to fully fund the project.
2. **TRAFFIX - (UPC# T1404) - HRT**
 - This project entails the continued funding of this transportation demand management (TDM) program.
 - Allocated \$1,000,000 in FY 2023 RSTP funds.
3. **Skiffes Creek Connector - (UPC# 100200) - James City County**
 - The project entails constructing a two-lane roadway which will start at Route 60, span the railroad track and Route 143 and tie back in with Route 143 as a fish-hook alignment.
 - Allocated \$1,544,066 in FY 2023 RSTP funds to fully fund the project.
4. **Croaker Road Widening - (UPC# 100920) - James City County**
 - The project entails a four lane widening from Library Rd. to Rte. 60. Underground utilities will have to be relocated.
 - Allocated \$8,600,000 in FY 2023 RSTP funds to fully fund the project.
5. **George Washington Highway Corridor Improvements (including Elm Ave. intersection) - (UPC# 107035) - Portsmouth**
 - This project entails realigning Elm Avenue to allow for the creation of a traditional 90-degree, four-legged intersection at Williams Avenue and Victory Boulevard. This geometry will significantly improve sight distance for the southbound approach as well as allow for appropriate geometric radii to accommodate heavy truck traffic within this industrial corridor. The improved intersection will provide the additional lanes and storage capacity needed to address specific traffic conditions at this location, such as heavy vehicles and queuing requirements associated with peak inbound demands for Norfolk Naval Shipyard (Gate 39). Since the Norfolk Naval Shipyard is a secured facility, gate checks for inbound vehicles require unique storage requirements that should

consider both storage capacity and signal operations. The realignment will also consider key multimodal connections for bike and pedestrian accommodations.

- Allocated \$1,500,000 in FY 2023 RSTP funds.
- Total FY 2023 and future RSTP funding request: \$5,400,000

6. Elbow Road Extended - Phase 2 - (UPC# 16828) - Virginia Beach

- The project entails construction of Elbow Road from Indian River Road to Dam Neck Road at the amphitheater. Construction will include widening Elbow Road from a two-lane roadway to a four-lane divided highway within a 125-ft right-of-way. The typical section features a sidewalk, shared-use path, landscaping, and aesthetic design elements. In addition, the existing sub-standard Elbow Road Bridge will be replaced.
- Allocated \$11,221,342 in FY 2023 RSTP funds.
- Total FY 2023 and future RSTP funding request: \$20,303,074

New RSTP Projects

1. **George Washington Memorial Highway (Route 17) Widening - Phase 1 - (ID# GL1RS) - Gloucester County**
 - This project entails the continuation of the widening of George Washington Memorial Highway (US Route 17) from a 4-lane principal arterial to a 6-lane principle arterial and to provide safe passage for pedestrians. The phase will begin at the intersection of Farmwood Road, where a previous widening project ended, and continue to approximately 1000 feet north of the intersection with Hook Road/Guinea Road. The total length of this phase is 1.4 miles of the overall 10.4 miles for the entire project.
 - Allocated \$2,200,000 in FY 2023 RSTP funds.
 - Total FY 2023 and future RSTP funding request: \$43,900,000
2. **James City County Master Transportation Plan - (ID# JC1RS) - James City County**
 - The project entails creating a master plan as a part of updating the County's Comprehensive Plan. Transportation systems have a profound impact on the mobility and quality of life of its residents and, all too often, transportation systems are thought of only after land use decisions have been made. The goal of the MTP will be to define a future multimodal transportation network with enhanced features that support James City County's and the region's quality of life and economic vitality and which is fully integrated with the county's future land use plans.
 - Allocated \$50,000 in FY 2023 RSTP funds.
 - Total FY 2023 and future RSTP funding request: \$500,000
3. **Suffolk Bypass/Godwin Blvd-Wilroy Rd-Pruden Blvd Interchange Modification Report (IMR) - (ID# SF2RS) - Suffolk**
 - The project entails providing an IMR for the Route 58 Suffolk Bypass at Godwin Boulevard, Wilroy Road, and Pruden Boulevard interchanges for all movements.
 - Allocated \$50,000 in FY 2023 RSTP funds.
 - Total FY 2023 and future RSTP funding request: \$2,000,000

4. Peninsula Corridor DEIS/Conceptual Engineering - (ID#HT1RS) – HRT

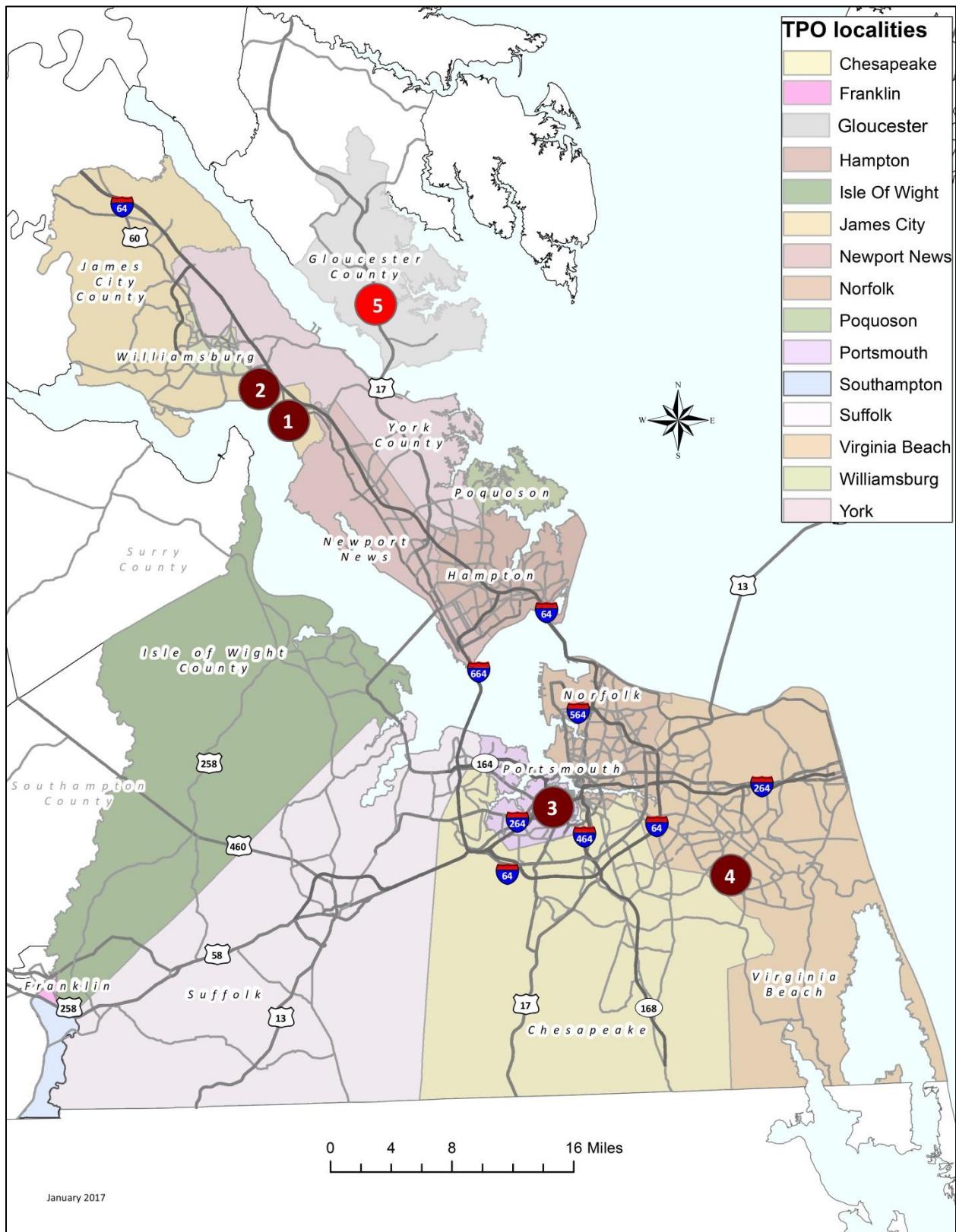
- The project entails identifying and comparing the benefits, costs, and impacts of fixed guideway alternatives. Part of this effort will examine how the Locally Preferred Alignment will connect the third crossing to the Southside. The intent of the DEIS analysis is to identify potential impacts to the social, economic and natural environment for each alternative and the relative cost to avoid/minimize/mitigate these impacts. The conceptual engineering effort will define key connection points, right of way requirements, station locations, and prepare a set of prototypical design sheets. The overall level of design will be between 5% -10%.
- Allocated \$2,045,144 in FY 2023 RSTP funds.
- Total FY 2023 and future RSTP funding request: \$8,000,000

This Page Intentionally Left Blank

Projects Selected for RSTP Allocations

Mapped Projects

- 1 Skiffes Creek Connector - James City County
- 2 Croaker Road Widening - James City County
- 3 George Washington Hwy Corridor Improvements (incl. Elm Ave. intersection) Portsmouth
- 4 Elbow Road Extended - Phase 2 - Virginia Beach
- 5 George Washington Memorial Highway (Route 17) Widening - Phase 1 - Gloucester County


Unmapped Projects

- 6 Naval Station Norfolk Transit Extension Study FEIS/PE - HRT
- 7 TRAFFIX Transportation Demand Management Program - HRT
- 8 Suffolk Bypass/Godwin Blvd-Wilroy Rd-Pruden Blvd Interchange IMR Study - Suffolk
- 9 James City County Master Transportation Plan - James City County
- 10 Peninsula Corridor DEIS/Conceptual Engineering - HRT

Project Selection Status

- Previously Approved RSTP Projects
- New RSTP Projects

Map 2 | Projects Selected for RSTP Allocations

This Page Intentionally Left Blank

Section II

Background

INTRODUCTION

The Hampton Roads Transportation Planning Organization (HRTPO) is the metropolitan planning organization (MPO) for the Hampton Roads region of Virginia. As such, it is a federally mandated transportation policy board comprised of representatives from local, state, and federal governments, transit agencies, and other stakeholders and is responsible for transportation planning and programming for the Hampton Roads metropolitan planning area (MPA). The MPA is comprised of the cities of Chesapeake, Franklin, Hampton, Newport News, Norfolk, Poquoson, Portsmouth, Suffolk, Virginia Beach, and Williamsburg; the counties of Isle of Wight, James City, and York; and a portion of Gloucester and Southampton Counties. Among its functions, the HRTPO is responsible for project selection and allocation of funds under two federal programs – the Congestion Mitigation and Air Quality Improvement Program (CMAQ) and the Regional Surface Transportation Program (RSTP).

The CMAQ program provides federal funding to states and localities for transportation projects and programs that help improve air quality and reduce traffic congestion. This funding is intended for areas designated by the U.S. Environmental Protection Agency (EPA) as nonattainment or maintenance areas with regard to the National Ambient Air Quality Standards (NAAQS). A *nonattainment area* is one that does not meet the NAAQS for one or more pollutant. A *maintenance area* is one that was originally designated a nonattainment area, but later met the NAAQS. Hampton Roads has been designated as an attainment area for the current ozone standard and as a maintenance area for the previous standard.

The Surface Transportation Program (STP) provides federal funding that may be used by states and localities for a wide range of highway and transit projects. Regional Surface Transportation Program (RSTP) funds are STP funds that are apportioned to specific regions within a state.

This report summarizes the work of selecting CMAQ and RSTP projects during the CMAQ/RSTP Project Selection Process of 2016. Projects selected received allocations of CMAQ or RSTP funds for FY 2023.

ELIGIBLE RECIPIENTS

Eligible recipients of CMAQ and RSTP funds in Hampton Roads include the localities within the MPA, Hampton Roads Transit (HRT), the Williamsburg Area Transit Authority (WATA), state transportation agencies, and the HRTPO.

PROJECT SELECTION PROCESS

The process for obtaining CMAQ or RSTP funding for transportation projects is a competitive one. According to the CMAQ/RSTP Project Selection Process that has been approved by the HRTPO Board, all project proposals are analyzed by the HRTPO staff using a specific set of evaluation criteria. The proposed projects are then ranked based on the results of the analyses. All proposed projects must be consistent with the current HRTPO Long-Range Transportation Plan (LRTP). The LRTP is a financially-constrained transportation plan for the Hampton Roads MPA. The LRTP has a planning horizon of at least 20 years.

2016 CMAQ/RSTP Project Selection Process Steps and Deadlines

7/29/2016	<ul style="list-style-type: none">Deadline for Public to submit projects to be considered for CMAQ/RSTP funding.
8/15/2016	<ul style="list-style-type: none">Deadline for Applications for project proposals from localities, transit agencies and state transportation agencies.
9/30/2016	<ul style="list-style-type: none">Project evaluations completed by HRTPO staff.
10/28/2016	<ul style="list-style-type: none">Transportation Programming Subcommittee (TPS) meeting to review proposed projects and recommend funding allocations.
11/02/2016	<ul style="list-style-type: none">Transportation Technical Advisory Committee (TTAC) meeting to consider recommendations of the TPS and makes a recommendation for consideration by the HRTPO Board.
11/17/2016	<ul style="list-style-type: none">HRTPO Board meeting to consider TTAC recommendations regarding CMAQ/RSTP projects and funding allocations for final approval.

PUBLIC PARTICIPATION

The general public was invited to submit project ideas for possible CMAQ or RSTP funding. A public notice soliciting CMAQ and RSTP project ideas from the public was posted on June 29, 2016. A special CMAQ/RSTP Project Idea Form was provided for use by the public and posted on the HRTPO website. The deadline for submission of project ideas from the public was July 29, 2016. Project ideas submitted by the public are reviewed by HRTPO staff and then forwarded to the appropriate locality or agency for consideration as a possible project proposal. One project idea was received from the public as a result of this invitation. (See Appendix C)

In addition to the invitation for public involvement at the beginning of the process, all of the meetings associated with the CMAQ/RSTP Project Selection Process - meetings of the Transportation Programming Subcommittee (TPS), Transportation Technical Advisory Committee (TTAC), and HRTPO Board - were public meetings that included an opportunity for public comment at the beginning of each meeting. No public comments regarding the project selection process were received, orally or in writing, during any of those meetings.

Section III

CMAQ Project Selection

CMAQ PROJECT SELECTION

In Hampton Roads, projects are selected for funding with Congestion Mitigation and Air Quality Improvement Program (CMAQ) funds based on the amount of air quality improvement expected per dollar spent. This is analyzed in terms of reductions in the emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), which are precursors of ozone. The air quality aspect of the CMAQ analysis allows all types of CMAQ projects to be compared against one another.

The original analysis policies and procedures were developed in December 1992 after the passage of the Intermodal Surface Transportation Efficiency Act (ISTEA). Over the years since 1992 the policies and procedures have been reviewed and revised. Details on the policies, procedures, and analysis methodologies used for CMAQ project selection are included in the ***Guide to the HRTPO CMAQ and RSTP Project Selection Process***, which may be accessed on the HRTPO website at <http://www.hrtpo.org/page/cmaq-and-rstp/>.

To help insure that all of the necessary information is included with each project proposal, and to provide some uniformity to the way that project information is submitted, the HRTPO staff developed application forms to be used when submitting CMAQ project proposals. The various ***CMAQ Candidate Project Application Forms*** may be accessed on the HRTPO website at <http://www.hrtpo.org/page/cmaq-and-rstp/>.

Prior to considering new projects to receive CMAQ allocations, the status of previously approved projects is reviewed to determine whether additional funding is required to allow for the completion of a project or project phase. The review of previously approved projects also includes determining whether those projects are progressing on schedule or whether funds should be:

1. Reallocated to correspond with updated phase schedules, or
2. Reallocated to other projects.

During the 2016 project selection process, 5 requests were made for additional funding for previously approved CMAQ projects. The total request for FY 2023 funding was \$8.6 million.

Table 1 shows all of the new projects proposed for CMAQ funding during the project selection process of 2016. As shown in the table, 17 candidate projects, with a total request of over \$28.6 million, were submitted. The total request for FY 2023 funding was \$10.2 million.

Table 2 shows the scoring and ranking of the 17 candidate projects. As shown in the table, each project was scored and ranked based on its cost-effectiveness at reducing VOC and NOx emissions. The ranks for VOC and NOx reduction were summed to produce the composite ranking. The detailed evaluation and scoring worksheets for each of the CMAQ candidate projects are included in **Appendix A**.

Table 3 shows the new and previously approved projects that were ultimately approved by the HRTPO Board on November 17, 2016 to receive CMAQ allocations in fiscal year 2023. It should be noted that the total CMAQ funding expected to be available for FY 2023, including the 20 percent state match, is approximately \$14 million.

Table 1 | 2016 CMAQ New Candidate Projects

Number	Code	Applicant	Project Name	Total Cost	Total CMAQ Request	Total FY-23 Request
1	CH1CM	Chesapeake	Chesapeake Signal System - Phase 4	\$ 500,000	\$ 500,000	\$ 80,000
2	CH2CM	Chesapeake	Battlefield Blvd/Kempsville Rd/Great Bridge Blvd Intersection Improvements	\$ 1,050,000	\$ 1,050,000	\$ 550,000
3	GL1CM	Gloucester Cty.	Pedestrian Improvements on Route 1208 (Greate Road)	\$ 500,000	\$ 500,000	\$ 65,000
4	NN1CM	Newport News	Citywide Signal System Progression	\$ 1,250,000	\$ 1,250,000	\$ 350,000
5	NN2CM	Newport News	Tabbs Lane Sidewalk Infill	\$ 650,000	\$ 650,000	\$ 238,000
6	PR1CM	Portsmouth	Portsmouth Citywide Signal Timing – Phase 1	\$ 120,000	\$ 120,000	\$ 120,000
7	SF1CM	Suffolk	Downtown Signal System Upgrade	\$ 1,650,000	\$ 1,650,000	\$ 150,000
8	SF2CM	Suffolk	Downtown Railroad Warning System	\$ 650,000	\$ 650,000	\$ 150,000
9	SF3CM	Suffolk	Citywide Signal System Upgrade	\$ 2,650,000	\$ 2,650,000	\$ 150,000
10	SF4CM	Suffolk	Crittenden Road/Route 17 Intersection Realignment	\$ 5,500,000	\$ 5,500,000	\$ 1,000,000
11	VB1CM	Virginia Beach	Dam Neck Road/Holland Road Intersection Improvements	\$ 2,190,000	\$ 2,190,000	\$ 430,000
12	WA1CM	WATA	New Demonstration Routes – Upper York County/Kent County Connector	\$ 1,308,555	\$ 1,308,555	\$ 516,164
13	WA2CM	WATA	Expansion of Bus Shelters	\$ 234,000	\$ 234,000	\$ 117,000
14	WA3CM	WATA	Six (6) Bus Purchase Replacement	\$ 3,142,710	\$ 3,142,710	\$ 3,142,710
15	WA4CM	WATA	Four (4) Bus Expansion Purchase for New Service	\$ 1,793,772	\$ 1,793,772	\$ 1,793,772
16	YK1CM	York County	Bypass Road Sidewalk	\$ 840,000	\$ 840,000	\$ 840,000
17	VP1CM	VPA	Expanded Marine Highway Barge Service	\$ 4,543,620	\$ 4,543,620	\$ 543,620
Total				\$ 28,572,657	\$ 28,572,657	\$10,236,266

Table 2 | 2016 CMAQ New Candidate Projects in Ranked Order

#	ID	Jurisdiction	Project Description	Rank	Total Cost	Total Request	FY 23 Request	Cost-Effectiveness		Score		
New Candidate Projects												
1	CH1CM	Chesapeake	Chesapeake Signal System - Phase 4	1	\$500,000	\$500,000	\$80,000	\$6,099	\$6,506	1	1	2
2	PR1CM	Portsmouth	Portsmouth Citywide Signal Timing – Phase 1	2	\$120,000	\$120,000	\$120,000	\$14,431	\$15,395	2	2	4
3	NN1CM	Newport News	Citywide Signal System Progression	3	\$1,250,000	\$1,250,000	\$350,000	\$22,720	\$24,238	3	3	6
4	WA3CM	WATA	Six (6) Bus Purchase Replacement	4	\$3,142,710	\$3,142,710	\$3,142,710	\$93,516	\$45,822	4	5	9
5	SF3CM	Suffolk	Citywide Signal System Upgrade	5	\$2,650,000	\$2,650,000	\$150,000	\$330,732	\$43,971	7	4	11
6	SF1CM	Suffolk	Downtown Signal System Upgrade	6	\$1,650,000	\$1,650,000	\$150,000	\$173,874	\$185,485	5	7	12
7	WA2CM	WATA	Expansion of Bus Shelters	6	\$234,000	\$234,000	\$117,000	\$279,149	\$90,352	6	6	12
8	SF2CM	Suffolk	Downtown Railroad Warning System	8	\$650,000	\$650,000	\$150,000	\$444,958	\$352,819	8	8	16
9	CH2CM	Chesapeake	Battlefield Blvd/Kempsville Rd/Great Bridge Blvd Intersection Improvements	9	\$1,050,000	\$1,050,000	\$550,000	\$494,992	\$474,673	9	9	18
10	VP1CM	VPA	Expanded Marine Highway Barge Service	10	\$4,543,620	\$4,543,620	\$543,620	\$1,363,086	\$528,048	10	10	20
11	GL1CM	Gloucester Cty.	Pedestrian Improvements on Route 1208 (Greate Road)	11	\$500,000	\$500,000	\$65,000	\$34,412,989	\$11,138,504	11	11	22
12	VB1CM	Virginia Beach	Dam Neck Road/Holland Road Intersection Improvements	12	\$2,190,000	\$2,190,000	\$430,000	\$40,615,677	\$43,328,025	12	13	25
13	NN2CM	Newport News	Tabbs Lane Sidewalk Infill	12	\$650,000	\$650,000	\$238,000	\$55,264,923	\$17,887,680	13	12	25
14	SF4CM	Suffolk	Crittenden Road/Route 17 Intersection Realignment	14	\$5,500,000	\$5,500,000	\$1,000,000	\$62,825,904	\$67,021,470	14	15	29
15	WA1CM	WATA	New Demonstration Routes – Upper York County/Kent County Connector	14	\$1,308,555	\$1,308,555	\$516,164	\$72,616,857	\$62,493,509	15	14	29
16	YK1CM	York County	Bypass Road Sidewalk	16	\$840,000	\$840,000	\$840,000	\$193,076,962	-\$8,242,079	16	17	33
17	WA4CM	WATA	Four (4) Bus Expansion Purchase for New Service	16	\$1,793,772	\$1,793,772	\$1,793,772	-\$1,602,729	-\$834,730	17	16	33
	Totals				\$28,572,657	\$28,572,657	\$10,236,266					

Prepared by HRPO Staff October 21, 2016

¹The Composite Score is computed as follows:

First, projects are evaluated for their estimated impacts on the reduction of VOC's and NOx.

Second, projects are sorted in ascending order based on the Cost/Benefit for VOC reduction and numbered sequentially. Lower numbers are better.

Third, projects are sorted in ascending order based on the Cost/Benefit for NOx reduction and numbered sequentially. Lower numbers are better.

Finally, the sequential numbers for VOC reduction and NOx reduction are added together to produce the Composite Score. Lower numbers are better.

The Cost-Effectiveness figures represent \$/ton of pollutants (NOx, VOC) removed based on the annualized cost of the project.

Table 3 | FY-2023 Allocations to Previously Approved and New CMAQ Projects

ID/UPC#	Jurisdiction	Project Description	Proposed Allocation FY-23
Previously Approved Projects			
T16054	HRT	Bus Vehicle Replacement (148)	\$5,740,392
108982	Suffolk	Suffolk Traffic Operations Center (TOC)	\$750,000
T17893	Norfolk	Bus Shelters and Pedestrian Improvements	\$220,000
T17890	WATA	York County - Southeast - Demonstration Route	\$471,666
T17980	Suffolk	Suffolk Citywide Signal Timings	\$230,000
New CMAQ Projects with FY-23 Allocations			
CH1CM	Chesapeake	Chesapeake Signal System - Phase 4	\$80,000
PR1CM	Portsmouth	Portsmouth Citywide Signal Timing – Phase 1	\$120,000
NN1CM	Newport News	Citywide Signal System Progression	\$350,000
WA3CM	WATA	Bus Purchase Replacement (6)	\$3,142,710
SF3CM	Suffolk	Citywide Signal System Upgrade	\$150,000
SF1CM	Suffolk	Downtown Signal System Upgrade	\$150,000
WA2CM	WATA	Expansion of Bus Shelters	\$117,000
SF2CM	Suffolk	Downtown Railroad Warning System	\$150,000
CH2CM	Chesapeake	Battlefield Blvd/Kempsville Rd/Great Bridge Blvd Intersection Improvements	\$550,000
VP1CM	VPA	Expanded Marine Highway Barge Service	\$543,620
GL1CM	Gloucester County	Pedestrian Improvements on Route 1208 (Greate Road)	\$65,000
VB1CM	Virginia Beach	Dam Neck Road/Holland Road Intersection Improvements	\$430,000
NN2CM**	Newport News	Tabbs Lane Sidewalk Infill	\$238,000
SF4CM	Suffolk	Crittenden Road/Route 17 Intersection Realignment	\$372,530
WA1CM	WATA	New Demonstration Routes – Upper York County/Kent County Connector	\$372,530
		TOTAL: CMAQ Allocations	\$14,005,448

** Allocated \$238,000 in FY 2023 CMAQ funds. The FY 2023 funding of \$238,000 was subsequently removed as the project was deemed ineligible to receive federal funding. The proposed project location was on a roadway with a functional classification of urban local.

This Page Intentionally Left Blank

Section IV

RSTP Project Selection

RSTP PROJECT SELECTION

Projects selected for funding with Regional Surface Transportation Program (RSTP) funds must meet certain criteria originally developed in 1992 and reviewed and revised since. Details on the policies, procedures, and analysis methodologies used for RSTP project selection are included in the ***Guide to the HRTPO CMAQ and RSTP Project Selection Process***, which may be accessed on the HRTPO website at <http://www.hrtpo.org/page/cmaq-and-rstp/>.

To help insure that all of the necessary information is included with each project proposal, and to provide some uniformity to the way that project information is submitted, HRTPO staff developed application forms to be used when submitting RSTP project proposals. The various ***RSTP Candidate Project Application Forms*** may be accessed on the HRTPO website at <http://www.hrtpo.org/page/cmaq-and-rstp/>.

Prior to considering new projects to receive RSTP allocations, the status of previously approved projects is reviewed to determine whether additional funding is required to allow for the completion of a project or project phase. The review of previously approved projects also includes determining whether those projects are progressing on schedule or whether funds should be:

1. Reallocated to correspond with updated phase schedules, or
2. Reallocated to other projects.

After addressing the needs of previously approved RSTP projects, new candidate projects to receive available RSTP funding were considered. **Table 4** shows all of the new projects proposed for RSTP funding during the project selection process in 2016. As shown in the table, 23 candidate projects, with a total request of \$176 million, were submitted.

The analysis of RSTP project proposals is more qualitative in nature than the CMAQ analysis. Unlike the CMAQ analysis, RSTP projects must be placed into categories and only projects within the same category can be compared against one another. For this reason, a predetermination must be made with regard to the proportions of available funds that will be allocated to highway versus non-highway projects.

In an effort to continually improve the quantitative nature of the HRTPO CMAQ and RSTP Project Selection Process, the Transportation Technical Advisory Committee (TTAC) recommended during the meeting of March 2, 2016 that the HRTPO Project Prioritization Tool be used to evaluate highway-type RSTP projects and to continue to use the previous RSTP methodologies to evaluate non-highway RSTP projects since the HRTPO Prioritization Tool is not currently capable of evaluating most non-highway type projects. The HRTPO Board approved this change to the Project Selection Process on March 17, 2016.

The Tool does not currently apply the Economic Vitality component for some projects types and, therefore, the scores for such projects cannot be directly compared to the scores for the other projects. **Table 5** shows the scoring and ranking of the 23 candidate projects. The detailed evaluation and scoring worksheets for each of the newly submitted RSTP projects are included in **Appendix B**.

Table 6 shows the four new projects and six previously approved projects that were ultimately approved by the HRTPO Board on November 17, 2016 to receive RSTP funding allocations in FY 2023. The total RSTP funding expected to be available for FY 2023, including the 20 percent state match, is approximately \$34 million.

Table 4 | 2016 RSTP New Candidate Projects

Number	Code	Applicant	Project Name (HRTPO Prioritization Tool ID)	Total Cost	Total RSTP Request	Total FY-23 Request
Highway: Utilizing HRTPO Prioritization Tool						
Roadway Widening, New Facilities, HOV Lanes, Intersection Improvements						
1	CH1RS	Chesapeake	Mt. Pleasant/Great Bridge Bypass (2040-33)	\$ 29,500,000	\$ 29,500,000	\$ 9,500,000
2	GL1RS	Gloucester Cty.	George Washington Memorial Highway (Route 17) Widening Phase 1 (2040-40)	\$ 43,900,000	\$ 43,900,000	\$ 2,200,000
3	SF6RS	Suffolk	Crittenden Road/Route 17 Intersection Realignment	\$ 5,500,000	\$ 5,500,000	\$ 1,000,000
4	VB1RS	Virginia Beach	Indian River Road Phase VII-B (2040-169)	\$ 12,660,000	\$ 12,660,000	\$ 920,000
5	VB2RS	Virginia Beach	Laskin Road Phase 1 (2040-171)	\$ 82,062,000	\$ 41,775,000	\$ 2,550,000
Corridor Operational Improvements						
6	PR1RS	Portsmouth	Elm Avenue Improvements between Navy Gates 29 and 36 (2040-126)	\$ 9,750,000	\$ 9,750,000	\$ 900,000
Bridge Replacement						
Highway: Utilizing RSTP Scoring Process						
Alternatives Analysis and Feasibility Studies						
7	JC1RS	James City Cty.	James City County Master Transportation Plan	\$ 500,000	\$ 500,000	\$ 500,000
8	SF2RS	Suffolk	Suffolk Bypass/Godwin Blvd-Wilroy Rd-Pruden Blvd IMR	\$ 2,000,000	\$ 2,000,000	\$ 2,000,000
Intelligent Transportation Systems Projects						
9	NN1RS	Newport News	Citywide Signal System Progression	\$ 1,250,000	\$ 1,250,000	\$ 350,000
10	SF3RS	Suffolk	Downtown Signal System Upgrade	\$ 1,650,000	\$ 1,650,000	\$ 150,000
11	SF4RS	Suffolk	Downtown Railroad Warning System	\$ 1,250,000	\$ 1,250,000	\$ 350,000
12	SF5RS	Suffolk	Citywide Signal System Upgrade	\$ 2,650,000	\$ 2,650,000	\$ 150,000
Non-Highway:						
New or Expanded Service, Passenger Facilities, HS/intercity/& light rail, Station Development, Vehicle Upgrades etc.						
13	HT2RS	HRT	Virginia Beach Operations and Maintenance Facility	\$ 3,000,000	\$ 3,000,000	\$ 3,000,000
14	WA2RS	WATA	Transit Bus Pull -Outs	\$ 345,300	\$ 345,300	\$ 345,300
15	WA3RS	WATA	New Demonstration Routes – Upper York County/Kent County Connector	\$ 1,308,555	\$ 1,308,555	\$ 516,164
16	WA5RS	WATA	Expansion Bus Shelters	\$ 234,000	\$ 234,000	\$ 117,000
Vehicle Replacement/Purchase						
17	HT3RS	HRT	Bus Vehicle Replacement	\$ 4,725,000	\$ 4,725,000	\$ 1,575,000
18	WA4RS	WATA	Four (4) Bus Expansion Purchase for New Service	\$ 1,793,772	\$ 1,793,772	\$ 1,793,772
19	WA7RS	WATA	Six (6) Bus Purchase Replacement	\$ 3,142,710	\$ 3,142,710	\$ 3,142,710
Other Transit						
20	SF1RS	Suffolk	College Drive Transit Safety Improvements	\$ 360,726	\$ 350,726	\$ 350,726
21	WA6RS	WATA	Automated Passenger Counting (APC) System	\$ 195,000	\$ 195,000	\$ 195,000
Alternatives Analysis and Feasibility Studies						
22	HT1RS	HRT	Peninsula Corridor DEIS/Conceptual Engineering	\$ 8,000,000	\$ 8,000,000	\$ 4,000,000
23	WA1RS	WATA	Transportation Development Plan (TDP) – 6 Year Plan	\$ 250,000	\$ 250,000	\$ 250,000
			TOTALS	\$ 216,027,063	\$ 175,730,063	\$ 35,855,672

Table 5 | 2016 RSTP Candidate Projects in Ranked Order

Number	Code	Applicant	Project Name	Score (Max = 300 for HRTPO Prioritization tool and 100 for RSTP Tool)
Highway: Utilizing HRTPO Prioritization Tool				
Roadway Widening, New Facilities, HOV Lanes, Intersection Improvements				
1	GL1RS	Gloucester Cty.	George Washington Memorial Highway (Route 17)Widening Phase 1 (2040-40)	140.0
2	VB2RS	Virginia Beach	Laskin Road Phase 1 (2040-171)	129.0
3	CH1RS	Chesapeake	Mt. Pleasant/Great Bridge Bypass (2040-33)	122.0
4	VB1RS	Virginia Beach	Indian River Road Phase VII-B (2040-169)	107.0
5	SF6RS	Suffolk	Crittenden Road/Route 17 Intersection Realignment	89.0
Corridor Operational Improvements				
6	PR1RS	Portsmouth	Elm Avenue Improvements between Navy Gates 29 and 36 (2040-126)	112.0
Bridge Replacement				
Highway: Utilizing RSTP Tool				
Alternatives Analysis and Feasibility Studies				
7	JC1RS	James City Cty.	James City County Master Transportation Plan	66.0
8	SF2RS	Suffolk	Suffolk Bypass/Godwin Blvd-Wilroy Rd-Pruden Blvd IMR	62.0
Intelligent Transportation Systems Projects				
9	SF5RS	Suffolk	Citywide Signal System Upgrade	76
10	NN1RS	Newport News	Citywide Signal System Progression	74
11	SF3RS	Suffolk	Downtown Signal System Upgrade	62.0
12	SF4RS	Suffolk	Downtown Railroad Warning System	57.0
Non-Highway:				
New or Expanded Service, Passenger Facilities, HS/intercity/& light rail, Station Development, Vehicle Upgrades etc.				
13	WA3RS	WATA	New Demonstration Routes – Upper York County/Kent County Connector	64
14	WA5RS	WATA	Expansion Bus Shelters	44
15	WA2RS	WATA	Transit Bus Pull -Outs	30.0
16	HT2RS	HRT	Virginia Beach Operations and Maintenance Facility	28.0
Vehicle Replacement/Purchase				
17	HT3RS	HRT	Bus Vehicle Replacement	65
18	WA7RS	WATA	Six (6) Bus Purchase Replacement	62
19	WA4RS	WATA	Four (4) Bus Expansion Purchase for New Service	28.0
Other Transit				
20	SF1RS	Suffolk	College Drive Transit Safety Improvements	55.0
21	WA6RS	WATA	Automated Passenger Counting (APC) System	50.0
Alternatives Analysis and Feasibility Studies				
22	HT1RS	HRT	Peninsula Corridor DEIS/Conceptual Engineering	77.0
23	WA1RS	WATA	Transportation Development Plan (TDP) – 6 Year Plan	67.0

Table 6 | FY 2023 Allocations to New and Previously Approved RSTP Projects

ID/UPC#	Jurisdiction	Project Description	Proposed Allocation FY-23
Previously Approved Projects			
T9093	HRT	Naval Station Norfolk Transit Extension Study FEIS/PE	\$6,000,000
T14104	HRT	TRAFFIX Program	\$1,000,000
100200	James City County	Skiffes Creek Connector	\$1,544,066
100920	James City County	Croaker Road Widening	\$8,600,000
107035	Portsmouth	George Washington Highway Corridor Improvements (including Elm Ave. Intersection)	\$1,500,000
15828	Virginia Beach	Elbow Road Extended - Phase 2	\$11,221,342
New RSTP Projects with FY-23 Allocations			
GL1RS	Gloucester County	George Washington Memorial Highway (Route 17) Widening Phase 1 (2040-40)	\$2,200,000
JC1RS	James City County	James City County Master Transportation Plan	\$50,000
SF2RS	Suffolk	Suffolk Bypass/Godwin Blvd-Wilroy Rd-Pruden Blvd Interchange Modification Report (IMR)	\$50,000
HT1RS	HRT	Peninsula Corridor DEIS/Conceptual Engineering	\$2,045,144
		TOTAL: RSTP Allocations	\$34,210,552
		TOTAL: Left in Reserve (For Highway Projects)	\$767,717

Section V
Appendices

APPENDIX A

CMAQ Project Evaluation Worksheets

**CONGESTION MITIGATION AND AIR QUALITY
BICYCLE AND PEDESTRIAN PROJECTS**

JURISDICTION: York County

PROJECT NAME: **Bypass Road Sidewalk**

LOCATION: Bypass Road (Route 60) between the western City of Williamsburg boundary [345' west of Waller Mill Road (Rte 713)] and the eastern City of Williamsburg boundary (275' east of Route 132)

DESCRIPTION: The proposed rehabilitation/reconstruction project will provide a safe and smooth surface for the many pedestrians and cyclists who use this facility. The proposed sidewalk would tie into existing sidewalks on both ends in the City of Williamsburg.

DATE: 8/9/2016 (on application)

PROJECT COST: **\$840,000**

1- ESTIMATES OF VMT REDUCTIONS:

Ground counts for reasonableness check re: CMAQ Post Evaluation study ⁽¹²⁾:

Bikeway	Bicycle Counts			Pedestrian Counts		
	Weekday Counts	Weekend Counts	Avg. Day Estimate ⁽¹⁾	Weekday Counts	Weekend Counts	Avg. Day Estimate ⁽¹⁾
<u>Sampled Bikeway</u>						
Goodwin Neck	2	4	3	0	0	0
Warwick Blvd	13	31	18	11	10	11
Col. Pkwy Conn.	34	81	47	7	5	6
Average:	16	39	23	6	5	6

Demand estimation for proposed facility re: NCHRP Report 552:

Local Bicycle Commute Share (C): 0.3% ⁽²⁾
Facility Length (L): 1.13 mi. ⁽¹³⁾

Buffer, Distance from Project	TAZ ⁽¹³⁾	2009 Density (D), persons/ sq.mi.	Buffer, Distance from Project	TAZ ⁽¹³⁾	2009 Density (D), persons/ sq.mi.
0.00-0.25 mi.	1264 1274 1277 1278 1279 1397 1403	587 370 318 137 899 16 766	0.50-1.00 mi.	1265 1267 1269 1270 1271 1275 1276 1280 1319	44 95 434 1,280 339 3,384 928 846 1,349
0.25-0.50 mi.	1266 1272 1273 0 0	127 80 2 0 0		1404 0 0 0	0 0 0 0
	Average:	442		Average:	870
	Average:	70			

Buffer, Distance from Project	TAZ	2009 Density (D), persons/ sq.mi.	Area of Buffer (A), sq.mi. ⁽⁶⁾	Residents in Buffer (R=D*A)	Existing Adult Cyclists (R*C*0.8) ⁽³⁾	New Adult Cyclists ⁽⁴⁾	Existing Adult Pedestrians ⁽⁵⁾	New Adult Pedestrians ⁽⁵⁾
0.00-0.25 mi.	above	442	0.57	250	1	1	0	0
0.25-0.50 mi.	above	70	0.57	39	0	0	0	0
0.50-1.00 mi.	above	870	1.13	983	2	1	1	0
				1,272	3	2	1	1

**CONGESTION MITIGATION AND AIR QUALITY
BICYCLE AND PEDESTRIAN PROJECTS**

JURISDICTION: Newport News
 PROJECT NAME: **Tabbs Lane Sidewalk Infill**
 LOCATION: Tabbs Lane between the intersections of Old Courthouse Way and Telford Drive
 DESCRIPTION: Tabbs Lane is an unimproved local collector with open ditches and limited existing pedestrian accomodations. Developments on each end of the project area have installed sidewalks. This project's scope will link these sidewalks to bridge the gap connecting the surrounding high density residential parcels to Warwick Boulevard, the adjacent major
 DATE: 8/11/2016 (on application)
 PROJECT COST: \$650,000

1- ESTIMATES OF VMT REDUCTIONS:

Ground counts for reasonableness check re: CMAQ Post Evaluation study ⁽¹²⁾:

Bikeway	Bicycle Counts			Pedestrian Counts		
	Weekday Counts	Weekend Counts	Avg. Day Estimate ⁽¹⁾	Weekday Counts	Weekend Counts	Avg. Day Estimate ⁽¹⁾
<u>Sampled Bikeway</u>						
Goodwin Neck	2	4	3	0	0	0
Warwick Blvd	13	31	18	11	10	11
Col. Pkwy Conn.	34	81	47	7	5	6
Average:	16	39	23	6	5	6

Demand estimation for proposed facility re: NCHRP Report 552:

Local Bicycle Commute Share (C): 0.3% ⁽²⁾
 Facility Length (L): 0.45 mi. ⁽¹³⁾

<u>Buffer,</u> <u>Distance from</u> <u>Project</u>	<u>2009 Density</u> <u>(D), persons/</u> <u>sq.mi.</u>	<u>Buffer,</u> <u>Distance from</u> <u>Project</u>	<u>2009 Density (D),</u> <u>persons/ sq.mi.</u>
0.00-0.25 mi.	<u>TAZ</u> ⁽¹³⁾ 1192 0 2,211 0	<u>TAZ</u> ⁽¹³⁾ 0.50-1.00 mi. 1191 1199 1175 1174 1173 1181 1204 1185 1110 5,927 3,160 6,163 2,904 5,058 521 0 1506 1,683	0.3% ⁽²⁾ 0.45 mi. ⁽¹³⁾
Average:	2,211	Average:	2,991
0.25-0.50 mi.	1176 1160 1193 1194 1115 1116 4,394 3,616 4,094 552 5,127 5,568 3,892		

<u>Buffer,</u> <u>Distance from</u> <u>Project</u>	<u>2009 Density</u> <u>(D), persons/</u> <u>sq.mi.</u>	<u>Area of Buffer (A),</u> <u>sq.mi. ⁽⁶⁾</u>	<u>Residents in</u> <u>Buffer (R=D*A)</u>	<u>Existing Adult</u> <u>Cyclists</u> <u>(R*C*0.8) ⁽³⁾</u>	<u>New Adult Cyclists</u> <u>(4)</u>	<u>Existing</u> <u>Adult</u> <u>Pedestrians</u> <u>(5)</u>	<u>New</u> <u>Adult</u> <u>Pedestrians</u> <u>(5)</u>
0.00-0.25 mi.	above 2,211	0.23	497	1	2	0	1
0.25-0.50 mi.	above 3,892	0.23	876	2	2	1	1
0.50-1.00 mi.	above 2,991	0.45	1,346	3	1	1	0
			2,719	7	6	2	1

Checking reasonableness of bicycle demand estimation via comparison to ground counts:

Existing Adult Cyclists:	7 above
New Adult Cyclists:	6 above
Total Adult Cyclists:	12
Trips, per day per cyclist:	2 trip to destination + return trip
Total Trips per Day:	25

vs. Trips on Sampled Bikeways:

23 above

Therefore, the demand calculation results are reasonable.

Calculating VMT reduction:

	<u>Biking</u>	<u>Walking</u>
New Users:	6	1 above
Trips, per day per user:	2	2 trip to destination + return trip
New Person Trips on Facility:	12	3
Eliminated Person Trips by Auto:	12	3 above ⁽⁷⁾
Occupancy of Eliminated Auto Trips:	1.25	1.25 ⁽¹¹⁾
Eliminated Vehicle Trips (Auto):	9	2
Avg. Alt. Mode Trip Length, mi.:	2	1 ⁽⁹⁾
Factor (for converting alt. mode trip lengths):	2	2 ⁽¹⁰⁾
Avg. Eliminated Auto Trip Length, veh-mi.:	4	2
VMT Reduction, mi:	38	5
Total:		42 vehicle-miles

2- EMISSIONS CALCULATIONS:

Type	Emissions Factor, g/mi ⁽⁵⁾	VMT Reduction, mi/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	0.067	42	3	0.003	250	1
NOx	0.207	42	9	0.009	250	2

3- COST EFFECTIVENESS:

Total Cost:	\$650,000 above
Useful life, years:	15 as assumed in CMAQ analyses of previous years
Annual Cost:	\$43,333

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$43,333	1	\$60,932	907	\$55,264,923
NOx	\$43,333	2	\$19,722	907	\$17,887,680

Notes:

⁽¹⁾ Average Day Estimate = [(Weekday Count * 5) + (Weekend Count * 2)] / 7

⁽²⁾ "A Review of 2000 Census Commute Data for Hampton Roads", HRPDC, Nov. 2005, p. 28

⁽³⁾ "Low" estimate, re: NCHRP Report 552, pg. 38

⁽⁴⁾ "New": i.e. as a result of proposed facility; New = Existing * B, where B varies

by buffer: 0-0.25mi: 1.93; 0.25-0.50mi: 1.11; 0.50-1.00mi: 0.39, re: NCHRP Report 552, pg. 39

⁽⁵⁾ Pedestrians = Cyclists / 4, based on ground counts at top of page

⁽⁶⁾ Only areas lateral to facility are included in buffers; semi-circular areas at ends of facility are not included in buffers

⁽⁷⁾ Assuming each new alt. mode trip eliminates an auto trip

⁽⁸⁾ Source: VDOT, Hampton Roads average for light duty vehicles and roadway functional classes, 2014, 35mph

⁽⁹⁾ Source: 2001 NHTS Table Designer

⁽¹⁰⁾ It is assumed that the eliminated auto trips will have length lower than regular auto trips (10 miles; source ⁽⁹⁾) and higher than regular alt. mode trips (shown above).

⁽¹¹⁾ All-trip occupancy, based on occupancies assumed in CMAQ analyses of previous years: work- 1.1; non-work- 1.3

⁽¹²⁾ HRPDC, Feb. 2003, Appendix C

⁽¹³⁾ From application

**CONGESTION MITIGATION AND AIR QUALITY
BICYCLE AND PEDESTRIAN PROJECTS**

JURISDICTION: Gloucester County

PROJECT NAME: **Pedestrian Improvements on Route 1208 (Greate Road)**

LOCATION: Route 1208 Greate Road and Greate Road West from Intersection of Route 17 to Gloucester Point Beach and Public Boat Ramp

DESCRIPTION: Pedestrian Improvements on Rte 1208 Greate Road and adjacent sideroads connecting to sidewalks currently being planned along Route 17 northbound.

DATE: 8/15/2016 (on application)

PROJECT COST: \$500,000

1- ESTIMATES OF VMT REDUCTIONS:

Ground counts for reasonableness check re: CMAQ Post Evaluation study ⁽¹²⁾:

Bikeway	Bicycle Counts			Pedestrian Counts		
	Weekday Counts	Weekend Counts	Avg. Day Estimate ⁽¹⁾	Weekday Counts	Weekend Counts	Avg. Day Estimate ⁽¹⁾
<u>Sampled Bikeway</u>						
Goodwin Neck	2	4	3	0	0	0
Warwick Blvd	13	31	18	11	10	11
Col. Pkwy Conn.	34	81	47	7	5	6
Average:	16	39	23	6	5	6

Demand estimation for proposed facility re: NCHRP Report 552:

Local Bicycle Commute Share (C): 0.3% ⁽²⁾
Facility Length (L): 0.63 mi. ⁽¹³⁾

Buffer, Distance from Project	2009 Density (D), persons/ sq.mi.		Buffer, Distance from Project	2009 Density (D), persons/ sq.mi.	
	TAZ ⁽¹³⁾	sq.mi.		TAZ ⁽¹³⁾	sq.mi.
0.00-0.25 mi.	1434	3,758	0.50-1.00 mi.	1434	3,758
	1435	1,287		1435	1,287
	0	0		0	0
Average:	2,523			0	0
0.25-0.50 mi.	1434	3,758		0	0
	1435	1,287		0	0
	0	0		0	0
	0	0		0	0
Average:	2,523		Average:	2,523	

Buffer, Distance from Project	2009 Density (D), persons/ sq.mi.		Area of Buffer (A), sq.mi. ⁽⁶⁾	Residents in Buffer (R=D*A)	Existing Adult Cyclists (R*C*0.8) ⁽³⁾	New Adult Cyclists ⁽⁴⁾	Existing Adult Pedestrians ⁽⁵⁾		New Adult Pedestrians ⁽⁶⁾	
	TAZ	sq.mi.					Pedestrians ⁽⁵⁾	Pedestrians ⁽⁶⁾	Pedestrians ⁽⁵⁾	Pedestrians ⁽⁶⁾
0.00-0.25 mi.	above	2,523	0.32	795	2	4	0	1		
0.25-0.50 mi.	above	2,523	0.32	795	2	2	0	1		
0.50-1.00 mi.	above	2,523	0.63	1,589	4	1	1	0		0
				3,178	8	7	2	2		2

Checking reasonableness of bicycle demand estimation via comparison to ground counts:

Existing Adult Cyclists:	8 above
New Adult Cyclists:	7 above
Total Adult Cyclists:	15
Trips, per day per cyclist:	2 trip to destination + return trip
Total Trips per Day:	30

vs. Trips on Sampled Bikeways:

23 above

Therefore, the demand calculation results are reasonable.

Calculating VMT reduction:

	<u>Biking</u>	<u>Walking</u>
New Users:	7	2 above
Trips, per day per user:	2	2 trip to destination + return trip
New Person Trips on Facility:	15	4
Eliminated Person Trips by Auto:	15	4 above ⁽⁷⁾
Occupancy of Eliminated Auto Trips:	1.25	1.25 ⁽¹¹⁾
Eliminated Vehicle Trips (Auto):	12	3
Avg. Alt. Mode Trip Length, mi.:	2	1 ⁽⁹⁾
Factor (for converting alt. mode trip lengths):	2	2 ⁽¹⁰⁾
Avg. Eliminated Auto Trip Length, veh-mi.:	4	2
VMT Reduction, mi:	47	6
Total:		52 vehicle-miles

2- EMISSIONS CALCULATIONS:

Type	Emissions Factor, g/mi ⁽⁵⁾	VMT Reduction, mi/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	0.067	52	4	0.004	250	1
NOx	0.207	52	11	0.011	250	3

3- COST EFFECTIVENESS:

Total Cost:	\$500,000 above
Useful life, years:	15 as assumed in CMAQ analyses of previous years
Annual Cost:	\$33,333

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$33,333	1	\$37,942	907	\$34,412,989
NOx	\$33,333	3	\$12,281	907	\$11,138,504

Notes:

⁽¹⁾ Average Day Estimate = [(Weekday Count * 5) + (Weekend Count * 2)] / 7

⁽²⁾ "A Review of 2000 Census Commute Data for Hampton Roads", HRPDC, Nov. 2005, p. 28

⁽³⁾ "Low" estimate, re: NCHRP Report 552, pg. 38

⁽⁴⁾ "New": i.e. as a result of proposed facility; New = Existing * B, where B varies

by buffer: 0-0.25mi: 1.93; 0.25-0.50mi: 1.11; 0.50-1.00mi: 0.39, re: NCHRP Report 552, pg. 39

⁽⁵⁾ Pedestrians = Cyclists / 4, based on ground counts at top of page

⁽⁶⁾ Only areas lateral to facility are included in buffers; semi-circular areas at ends of facility are not included in buffers

⁽⁷⁾ Assuming each new alt. mode trip eliminates an auto trip

⁽⁸⁾ Source: VDOT, Hampton Roads average for light duty vehicles and roadway functional classes, 2014, 35mph

⁽⁹⁾ Source: 2001 NHTS Table Designer

⁽¹⁰⁾ It is assumed that the eliminated auto trips will have length lower than regular auto trips (10 miles; source ⁽⁹⁾) and higher than regular alt. mode trips (shown above).

⁽¹¹⁾ All-trip occupancy, based on occupancies assumed in CMAQ analyses of previous years: work- 1.1; non-work- 1.3

⁽¹²⁾ HRPDC, Feb. 2003, Appendix C

⁽¹³⁾ From application

**CONGESTION MITIGATION AND AIR QUALITY
HIGHWAY PROJECTS - INTERSECTION GEOMETRY**

JURISDICTION: Virginia Beach
 PROJECT NAME: **Dam Neck Road/Holland Road Intersection Improvements**
 LOCATION: Intersection of Dam Neck Road and Holland Road
 DESCRIPTION: Includes the addition of a second left turn lane from westbound Dam Neck Road to southbound Holland Road. Also, reconstruction of existing refuge island on the northeast corner and
 DATE: 8/14/2015 ⁽¹⁾
 PROJECT COST: \$2,190,000

1 - REDUCED AUTO EMISSIONS

Weekday PM Peak Hour

Intersection Delay Before Project 51.8 sec/veh ⁽¹⁾
 Intersection Delay After Project 50.1 sec/veh ⁽¹⁾

Change In Intersection Delay 1.7 sec/veh, pk hr

Total Vehicles During Peak Hour 5,652 veh/hr ⁽¹⁾
 divided by 3,600 sec/hr

Change In Intersection Delay 2.7 veh hr's, pk hr

divided by 17% pk hr delay factor ⁽²⁾
 Change In Intersection Delay 15.7 hours/day

Type	Emissions Factor, g/hr ⁽³⁾	Delay Change, hr/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, weekdays/yr	Emissions Reduction, kg/yr
VOC	1.246	15.7	20	0.020	250	4.9
NOx	1.168	15.7	18	0.018	250	4.6

2 - COST EFFECTIVENESS

Total Cost: \$2,190,000 (from above)
 Useful life, years: 10 ⁽⁴⁾
 Annual Cost: \$219,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$219,000	4.9	\$44,780	907	\$40,615,677
NOx	\$219,000	4.6	\$47,771	907	\$43,328,025

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay;

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2023, idle.

(4) As previously assumed.

Checking reasonableness of bicycle demand estimation via comparison to ground counts:

Existing Adult Cyclists:	3 above
New Adult Cyclists:	2 above
Total Adult Cyclists:	5
Trips, per day per cyclist:	2 trip to destination + return trip
Total Trips per Day:	10

vs. Trips on Sampled Bikeways:

23 above

Therefore, the demand calculation results are reasonable.

Calculating VMT reduction:

	<u>Biking</u>	<u>Walking</u>
New Users:	2	1 above
Trips, per day per user:	2	2 trip to destination + return trip
New Person Trips on Facility:	4	1
Eliminated Person Trips by Auto:	4	1 above ⁽⁷⁾
Occupancy of Eliminated Auto Trips:	1.25	1.25 ⁽¹¹⁾
Eliminated Vehicle Trips (Auto):	3	1
Avg. Alt. Mode Trip Length, mi.:	2	1 ⁽⁹⁾
Factor (for converting alt. mode trip lengths):	2	2 ⁽¹⁰⁾
Avg. Eliminated Auto Trip Length, veh-mi.:	4	2
VMT Reduction, mi:	14	2
Total:		16 vehicle-miles

2- EMISSIONS CALCULATIONS:

Type	Emissions Factor, g/mi ⁽⁵⁾	VMT Reduction, mi/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	0.067	16	1	0.001	250	0
NOx	0.207	16	3	0.003	250	1

3- COST EFFECTIVENESS:

Total Cost:	\$840,000 above
Useful life, years:	15 as assumed in CMAQ analyses of previous years
Annual Cost:	\$56,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$56,000	0	\$212,874	907	\$193,076,962
NOx	\$56,000	1	\$68,901	907	\$62,493,509

Notes:

⁽¹⁾ Average Day Estimate = [(Weekday Count * 5) + (Weekend Count * 2)] / 7

⁽²⁾ "A Review of 2000 Census Commute Data for Hampton Roads", HRPDC, Nov. 2005, p. 28

⁽³⁾ "Low" estimate, re: NCHRP Report 552, pg. 38

⁽⁴⁾ "New": i.e. as a result of proposed facility; New = Existing * B, where B varies

by buffer: 0-0.25mi: 1.93; 0.25-0.50mi: 1.11; 0.50-1.00mi: 0.39, re: NCHRP Report 552, pg. 39

⁽⁵⁾ Pedestrians = Cyclists / 4, based on ground counts at top of page

⁽⁶⁾ Only areas lateral to facility are included in buffers; semi-circular areas at ends of facility are not included in buffers

⁽⁷⁾ Assuming each new alt. mode trip eliminates an auto trip

⁽⁸⁾ Source: VDOT, Hampton Roads average for light duty vehicles and roadway functional classes, 2014, 35mph

⁽⁹⁾ Source: 2001 NHTS Table Designer

⁽¹⁰⁾ It is assumed that the eliminated auto trips will have length lower than regular auto trips (10 miles; source⁽⁹⁾) and higher than regular alt. mode trips (shown above).

⁽¹¹⁾ All-trip occupancy, based on occupancies assumed in CMAQ analyses of previous years: work- 1.1; non-work- 1.3

⁽¹²⁾ HRPDC, Feb. 2003, Appendix C

⁽¹³⁾ From application

**CONGESTION MITIGATION AND AIR QUALITY
HIGHWAY PROJECTS - INTERSECTION GEOMETRY**

JURISDICTION: Chesapeake
 PROJECT NAME: **Battlefield Blvd/Kempsville Rd/Great Bridge Blvd Intersection Improvements**
 LOCATION: Intersection of Battlefielf Blvd and Kempsville Road/Great Bridge Blvd

DESCRIPTION: This project entails improvements to the intersection of Battlefield Blvd, Kempsville Rd, and Great Bridge Blvd that will add an additional eastbound lane along Great Bridge Blvd. Adding the additional lane will require relocating the existing utilities along the south side of Great Bridge Blvd. Revised pedestrian facilities

DATE: 8/14/2016 ⁽¹⁾
 PROJECT COST: \$1,050,000

1 - REDUCED AUTO EMISSIONS

Weekday PM Peak Hour

Intersection Delay Before Project	140	sec/veh ⁽¹⁾
Intersection Delay After Project	80	sec/veh ⁽¹⁾
Change In Intersection Delay		<u>60.0</u> sec/veh, pk hr
Total Vehicles During Peak Hour	6,300	veh/hr ⁽¹⁾
	divided by	3,600 sec/hr
Change In Intersection Delay		<u>105.0</u> veh hr's, pk hr
Change In Intersection Delay	divided by	<u>17%</u> pk hr delay factor ⁽²⁾
		617.6 hours/day

Type	Emissions Factor, g/hr ⁽³⁾	Delay Change, hr/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, weekdays/yr	Emissions Reduction, kg/yr
VOC	1.246	617.6	770	0.770	250	192.4
NOx	1.168	617.6	721	0.721	250	180.4

2 - COST EFFECTIVENESS

Total Cost: \$1,050,000 (from above)
 Useful life, years: 10 ⁽⁴⁾
 Annual Cost: \$105,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$105,000	192.4	\$546	907	\$494,992
NOx	\$105,000	180.4	\$582	907	\$528,048

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay;

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2023, idle.

(4) As previously assumed.

**CONGESTION MITIGATION AND AIR QUALITY
HIGHWAY PROJECTS - INTERSECTION GEOMETRY**

JURISDICTION: Suffolk
 PROJECT NAME: **Crittenden Road/Route 17 Intersection**
 LOCATION: Intersection of Crittenden Road and Route 17 with realigned Clubhouse Road
 DESCRIPTION: Project will realign the existing intersection of Crittenden Road and Route 17 with Clubhouse Road and Route 17. Traffic signal, turn lanes, and stormwater management features will be included.

DATE: 8/11/2016 ⁽¹⁾
 PROJECT COST: \$5,500,000

1 - REDUCED AUTO EMISSIONS

Weekday PM Peak Hour

Intersection Delay Before Project 23.8 sec/veh ⁽¹⁾
 Intersection Delay After Project 17.8 sec/veh ⁽¹⁾

Change In Intersection Delay 6.0 sec/veh, pk hr

Total Vehicles During Peak Hour 2,600 veh/hr ⁽¹⁾
 divided by 3,600 sec/hr

Change In Intersection Delay 4.3 veh hr's, pk hr

divided by 17% pk hr delay factor ⁽²⁾
 Change In Intersection Delay 25.5 hours/day

Type	Emissions Factor, g/hr ⁽³⁾	Delay Change, hr/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, weekdays/yr	Emissions Reduction, kg/yr
VOC	1.246	25.5	32	0.032	250	7.9
NOx	1.168	25.5	30	0.030	250	7.4

2 - COST EFFECTIVENESS

Total Cost: \$5,500,000 (from above)
 Useful life, years: 10 ⁽⁴⁾
 Annual Cost: \$550,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$550,000	7.9	\$69,268	907	\$62,825,904
NOx	\$550,000	7.4	\$73,894	907	\$67,021,470

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay;

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2023, idle.

(4) As previously assumed.

**CONGESTION MITIGATION AND AIR QUALITY
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Chesapeake
 PROJECT NAME: Chesapeake Signal System - Phase 4
 LOCATION: Citywide
 DESCRIPTION: Signal timing on 3 corridors including 39 intersections in 4 systems.
 DATE: 8/14/2016 ⁽¹⁾
 PROJECT COST: \$500,000

1 - EMISSIONS REDUCTION	veh / pm pk hr:	Low Volume Intersections	Medium Volume Intersections	High Volume Intersections	Total Intersections
		Less than 2,690	2,690 to 5,900	More than 5,900	
Number of Intersections ⁽¹⁾ :		20	50	107	177 ^(A)
	multiplied by:	2,690	5,900	9,500	veh / pm pk hr ⁽²⁾
	multiplied by:	10.7	10.7	10.7	sec/veh ⁽²⁾
	divided by:	3,600	3,600	3,600	sec/hr
	divided by:	0.17	0.17	0.17	delay factor ⁽³⁾
Change in Vehicle Delay:		941	5,158	17,772	hrs/day
Total Change in Vehicle Delay (sum of 3 col's above):				23,870	hrs/day

Type	Emissions Factor, g/hr ⁽⁴⁾	Change in Veh Delay, hr/day (above)	Emissions Reduction, g/day ⁽⁵⁾	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	1.246	23,870	29,743	29.7	250	7,436
NOx	1.168	23,870	27,881	27.9	250	6,970

2 - COST EFFECTIVENESS

Total Cost: \$500,000 (from above)
 Useful Life, years: 10 ⁽²⁾
 Annual Cost: \$50,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$50,000	7,436	\$6.72	907	\$6,099
NOx	\$50,000	6,970	\$7.17	907	\$6,506

Notes:

⁽¹⁾ From application

⁽²⁾ As previously assumed

⁽³⁾ Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

⁽⁴⁾ Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2023, idle.

⁽⁵⁾ Emission Factor * Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Newport News
 PROJECT NAME: **Citywide Signal System Progression**
 LOCATION: Citywide
 DESCRIPTION: Citywide - 265 signalized intersections
 DATE: 8/11/2016 ⁽¹⁾
 PROJECT COST: \$1,250,000

1 - EMISSIONS REDUCTION	veh / pm pk hr:	<u>Low Volume</u> <u>Intersections</u>	<u>Medium</u> <u>Volume</u> <u>Intersections</u>	<u>High Volume</u> <u>Intersections</u>	<u>Total Intersections</u>
		Less than 2,690	2,690 to 5,900	More than 5,900	
Number of Intersections ⁽¹⁾ :		205	57	3	265
multiplied by:	2,690	5,900	9,500	veh / pm pk hr ⁽²⁾	
multiplied by:	10.7	10.7	10.7	sec/veh ⁽²⁾	
divided by:	3,600	3,600	3,600	sec/hr	
divided by:	0.17	0.17	0.17	0.17 delay factor ⁽³⁾	
Change in Vehicle Delay:		9,641	5,880	498	hrs/day

Total Change in Vehicle Delay (sum of 3 col's above): 16,019 hrs/day

Type	Emissions Factor, g/hr ⁽⁴⁾	Change in Veh Delay, hr/day (above)	Emissions Reduction, g/day ⁽⁵⁾	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	1.246	16,019	19,960	20.0	250	4,990
NOx	1.168	16,019	18,711	18.7	250	4,678

2 - COST EFFECTIVENESS

Total Cost: \$1,250,000 (from above)
 Useful Life, years: 10 ⁽²⁾
 Annual Cost: \$125,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$125,000	4,990	\$25.05	907	\$22,720
NOx	\$125,000	4,678	\$26.72	907	\$24,238

Notes:

⁽¹⁾ From application

⁽²⁾ As previously assumed

⁽³⁾ Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

⁽⁴⁾ Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2023, idle.

⁽⁵⁾ Emission Factor * Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Portsmouth
 PROJECT NAME: **Portsmouth Citywide Signal Timing - Phase 1**
 LOCATION: Citywide
 DESCRIPTION: The project provides for the analysis of existing and development of new signal timings for strategic corridors in the City of Portsmouth.
 DATE: 8/15/2016 ⁽¹⁾
 PROJECT COST: \$120,000

1 - EMISSIONS REDUCTION	veh / pm pk hr:	<u>Low Volume Intersections</u>	<u>Medium Volume Intersections</u>	<u>High Volume Intersections</u>	<u>Total Intersections</u>
		Less than 2,690	2,690 to 5,900	More than 5,900	
Number of Intersections ⁽¹⁾ :		12	18	0	30
multiplied by:	2,690	5,900	9,500	veh / pm pk hr ⁽²⁾	
multiplied by:	10.7	10.7	10.7	sec/veh ⁽²⁾	
divided by:	3,600	3,600	3,600	sec/hr	
divided by:	0.17	0.17	0.17	0.17 delay factor ⁽³⁾	
Change in Vehicle Delay:		564	1,857	0 hrs/day	
Total Change in Vehicle Delay (sum of 3 col's above):				2,421 hrs/day	

Type	Emissions Factor, g/hr ⁽⁴⁾	Change in Veh Delay, hr/day (above)	Emissions Reduction, g/day ⁽⁵⁾	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	1.246	2,421	3,017	3.0	250	754
NOx	1.168	2,421	2,828	2.8	250	707

2 - COST EFFECTIVENESS

Total Cost: \$120,000 (from above)
 Useful Life, years: 10 ⁽²⁾
 Annual Cost: \$12,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$12,000	754	\$15.91	907	\$14,431
NOx	\$12,000	707	\$16.97	907	\$15,395

Notes:

⁽¹⁾ From application

⁽²⁾ As previously assumed

⁽³⁾ Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

⁽⁴⁾ Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2010b), 2021, idle.

⁽⁵⁾ Emission Factor * Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Suffolk
 PROJECT NAME: **Downtown Signal System Upgrade**
 LOCATION: Downtown
 DESCRIPTION: Upgrade to TS-2 cabinets and install fiber optic connectivity
 DATE: 8/15/2016 ⁽¹⁾
 PROJECT COST: \$1,650,000

1 - EMISSIONS REDUCTION	veh / pm pk hr:	Low Volume Intersections	Medium Volume Intersections	High Volume Intersections	Total Intersections
		Less than 2,690	2,690 to 5,900	More than 5,900	
Number of Intersections ⁽¹⁾ :		6	16	5	27
multiplied by:	2,690	5,900	9,500	veh / pm pk hr ⁽²⁾	
multiplied by:	10.7	10.7	10.7	sec/veh ⁽²⁾	
divided by:	3,600	3,600	3,600	sec/hr	
divided by:	0.17	0.17	0.17	0.17 delay factor ⁽³⁾	
Change in Vehicle Delay:	282	1,650	830	hrs/day	
Total Change in Vehicle Delay (sum of 3 col's above):				2,763	hrs/day

Type	Emissions Factor, g/hr ⁽⁴⁾	Change in Veh Delay, hr/day (above)	Emissions Reduction, g/day ⁽⁵⁾	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	1.246	2,763	3,443	3.4	250	861
NOx	1.168	2,763	3,227	3.2	250	807

2 - COST EFFECTIVENESS

Total Cost: \$1,650,000 (from above)
 Useful Life, years: 10 ⁽²⁾
 Annual Cost: \$165,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$165,000	861	\$191.70	907	\$173,874
NOx	\$165,000	807	\$204.50	907	\$185,485

Notes:

⁽¹⁾ From application

⁽²⁾ As previously assumed

⁽³⁾ Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

⁽⁴⁾ Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2023, idle.

⁽⁵⁾ Emission Factor * Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Suffolk
 PROJECT NAME: **Citywide Signal System Upgrade**
 LOCATION: Citywide
 DESCRIPTION: Upgrade to TS-2 cabinets and install fiber optic or cellular network connectivity.
 DATE: 8/15/2016 ⁽¹⁾
 PROJECT COST: \$2,650,000

1 - EMISSIONS REDUCTION	veh / pm pk hr:	Low Volume Intersections	Medium Volume Intersections	High Volume Intersections	Total Intersections
		Less than 2,690	2,690 to 5,900	More than 5,900	
Number of Intersections ⁽¹⁾ :		6	7	8	21
multiplied by:	2,690	5,900	9,500	veh / pm pk hr ⁽²⁾	
multiplied by:	10.7	10.7	10.7	sec/veh ⁽²⁾	
divided by:	3,600	3,600	3,600	sec/hr	
divided by:	0.17	0.17	0.17	0.17 delay factor ⁽³⁾	
Change in Vehicle Delay:	282	722	1,329	hrs/day	
Total Change in Vehicle Delay (sum of 3 col's above):				2,333	hrs/day

Type	Emissions Factor, g/hr ⁽⁴⁾	Change in Veh Delay, hr/day (above)	Emissions Reduction, g/day ⁽⁵⁾	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	1.246	2,333	2,907	2.9	250	727
NOx	1.168	2,333	2,725	2.7	250	681

2 - COST EFFECTIVENESS

Total Cost: \$2,650,000 (from above)
 Useful Life, years: 10 ⁽²⁾
 Annual Cost: \$265,000

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$265,000	727	\$364.64	907	\$330,732
NOx	\$265,000	681	\$389.00	907	\$352,819

Notes:

⁽¹⁾ From application

⁽²⁾ As previously assumed

⁽³⁾ Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

⁽⁴⁾ Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2023, idle.

⁽⁵⁾ Emission Factor * Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY
OTHER**

JURISDICTION: Suffolk
 PROJECT NAME: **Downtown Railroad Warning System**
 LOCATION: CSX main line rail crossing of North Main Street
 DESCRIPTION: Install advance warning system in Suffolk to warn of approaching trains on the CSX mainline rail crossing.
 DATE: 8/15/2016 ⁽¹⁾
 PROJECT COST: \$650,000 ⁽¹⁾

1 - EMISSIONS REDUCTION

Vehicle Volume (ADT)	24,500	/1440	17.01	vehicles per minute
Train Crossings per day	5		340.28	vehicles delayed per train ⁽³⁾
Average Obstruction per train (min)	20		10	average vehicle delay (mins) ⁽⁶⁾

Arterial	Number of Vehicles Delayed ⁽⁴⁾	Avg Delay Before (s/veh)	Avg Delay After (s/veh)	Delay Savings (s/veh)	Delay Savings (s/day)	Delay Savings (hr/day)
Freeman Avenue						
North Main Street at CSX Main Line Crossing	1701	600	0	600	1,020,833	284
Total Delay Savings						284 hr/day

Type	Emissions Factor, g/hr ⁽²⁾	Change in Veh Delay, hr/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr ⁽³⁾	Emissions Reduction, kg/yr
VOC	1.246	284	353	0.4	250	88
NOx	1.168	284	331	0.3	250	83

2 - COST EFFECTIVENESS

Total Cost: \$650,000
 Useful Life, years: 15 ⁽⁵⁾
 Annual Cost: \$43,333

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Cost Effectiveness, \$/ton
VOC	\$43,333	88	\$491	\$444,958
NOx	\$43,333	83	\$523	\$474,673

⁽¹⁾ From application

⁽²⁾ Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2012014a) 2023, idle

⁽³⁾ Average Obstruction per train (minutes) * Vehicles per minute

⁽⁴⁾ Vehicles delayed per train * number of train crossings per day

⁽⁵⁾ Assumed useful life in years for railroad crossing early warning system

⁽⁶⁾ Avg. of 20 minute maximum delay and 0 minute minimum delay; (AVG 20,0)

**CONGESTION MITIGATION AND AIR QUALITY
TRANSIT SHELTERS/FACILITIES**

LOCALITY/AGCY: WATA

PROJECT NAME: **Expansion of Bus Shelters**

DESCRIPTION: The proposed project includes bus stop infrastructure improvements for the construction of twelve new transit bus shelters.

DATE: 8/12/2016 (on application)

PROJECT COST: \$234,000

1- INCREASED BUS EMISSIONS: No Increase in Service or Emissions

2- TRAVEL REDUCTIONS:

	Increase in Ridership:	348 boardings/day ⁽¹⁾
Vehicle Occupancy Rate (work):	1.15 persons/veh ⁽³⁾	
Reduction in Daily Vehicle Trips:	303 vehicles/day	

Average Trip Length:	10 miles/trip ⁽⁴⁾
Reduction in VMT:	3,026 miles/day

3- EMISSIONS REDUCTIONS:

Type	Emissions Factor, g/mi ⁽²⁾	VMT Reduction, mi/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, wkdays/yr	Emissions Reduction, kg/yr
VOC	0.067	3,026	203	0.203	250	51
NOx	0.207	3,026	626	0.626	250	157

4- COST EFFECTIVENESS:

Total Cost:	\$234,000 above
Useful Life, years:	15 as assumed in previous CMAQ analyses
Annual Cost:	\$15,600

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$15,600	51	\$308	907	\$279,149
NOx	\$15,600	157	\$100	907	\$90,352

Notes:

⁽¹⁾ From Applicant

⁽²⁾ Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2014a), 2014, 35mph

⁽³⁾ As assumed in CMAQ analyses of previous years

⁽⁴⁾ 2001 NHTS Table Designer

**CONGESTION MITIGATION AND AIR QUALITY
TRANSIT AND FIXED GUIDEWAY PROJECTS - NEW OR EXPANDED TRANSIT SERVICE**

JURISDICTION: WATA
 PROJECT NAME: **Upper York County/New Kent Connector - Demonstration Route**
 LOCATION: York County, James City County
 DESCRIPTION: New transit service that provides service to an unserved area of James City County
 DATE: 8/12/2016 (on application)
 PROJECT COST: \$1,308,555 ⁽¹⁾

1 - INCREASED BUS EMISSIONS:

Route Length (one-way):	35	mi/trip ⁽²⁾
Bus Trips per day (round trips):	7	round trips / day ⁽²⁾
Factor:		2 trips / round trip
Bus VMT:		490 mi/day

Type	Emissions Factor, g/mi ⁽³⁾	Bus VMT, mi/day (above)	Emissions Increase, g/day	Emissions Increase, kg/day	Conversion Factor, days/yr	Emissions Increase, kg/yr
VOC	0.034	490	17	0.02	250	4
NOx	0.634	490	311	0.31	250	78

2 - REDUCED AUTO EMISSIONS:

Ridership Estimate:	66	boardings/day ⁽²⁾
Vehicle Occupancy Rate:	1.15	persons/veh ⁽⁴⁾
Reduction in Daily Vehicle Trips:		57 veh trips / day
Average Trip Length:		10 miles/trip ⁽⁵⁾
Reduction in VMT:		574 miles/day

Type	Emissions Factor, g/mi ⁽⁶⁾	VMT Reduction, mi/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, days/yr	Emissions Reduction, kg/yr
VOC	0.067	574	38	0.04	250	10
NOx	0.207	574	119	0.12	250	30

3- COST EFFECTIVENESS:

Project Cost:	\$1,308,555	above
Project life, years:	3	⁽²⁾
Annual Cost:	\$436,185	

Type	Cost, \$/yr (above)	Net Emissions Reduction, kg/yr	Cost Effectiveness, \$/kg	Conversion Factor, kg/ton	Cost Effectiveness, \$/ton
VOC	\$436,185	5	\$80,063	907	\$72,616,857
NOx	\$436,185	-48	negative	907	negative

⁽¹⁾ From application

⁽²⁾ From application

⁽³⁾ VDOT, Hampton Roads average for Diesel Transit & Urban Buses on minor arterials, 2014, 35mph

⁽⁴⁾ 1.15 for work trips, 1.30 for non-work trips, as previously assumed

⁽⁵⁾ Average trip length for personal vehicle trips, 2001 NHTS

⁽⁶⁾ VDOT, Hampton Roads average for all vehicle types on minor arterials, 2014, 35mph

CONGESTION MITIGATION AND AIR QUALITY TRANSIT AND FIXED GUIDEWAY PROJECTS - VEHICLE PURCHASE/REPLACEMENT

AGENCY: WATA
PROJECT NAME: **Six (6) Bus Purchase Replacement**
DESCRIPTION: Replacement of (6) 35' low sulfur diesel buses.
DATE: 8/12/2016 (1)
PROJECT COST: **\$3,142,710**

Number of Vehicles Being Retired	6	vehicles ⁽¹⁾
Number of New Vehicles	6	vehicles ⁽¹⁾
Average Yearly Vehicle-Miles for Retired Vehicles	60,471	vehicle-miles ⁽¹⁾
Average Yearly Vehicle-Miles for New Vehicles	44,500	vehicle-miles ⁽¹⁾

1 - CHANGE IN VEHICLE EMISSIONS

Current Vehicles	Emissions Rate	Emissions Rate	VMT	Number of Vehicles	Yearly Emissions	Yearly Emissions
	g / bhp-hr ⁽¹⁾	g/mi ⁽²⁾	mi/yr/bus		g/yr	kg/yr
VOC	1.30	6.08	60,471	6	2,206,962	2,207
NOx	2.6	12.12	60,471	6	4,396,947	4,397

New Vehicles	Emissions Rate	Emissions Rate	VMT	Number of Vehicles	Yearly Emissions	Yearly Emissions
	g / bhp-hr ⁽¹⁾	g/mi ⁽²⁾	mi/yr/bus		g/yr	kg/yr
VOC	0.14	0.66	44,500	6	174,901	175
NOx	0.2	0.94	44,500	6	249,859	250

2 - EMISSIONS REDUCTION VOC 2,032 kg/yr
Reduction in Emissions NOx 4,147 kg/yr

3 - COST EFFECTIVENESS

Total Cost:	\$3,142,710 (from above)
Useful life, years:	15 ⁽³⁾
Annual Cost:	\$209,514

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Cost Eff., \$/Ton
VOC	\$209,514	2,032	\$103.10	\$93,516
NOx	\$209,514	4,147	\$50.52	\$45,822

⁽¹⁾ From application; given values for HC as proxy value for VOC

⁽²⁾ Applying a conversion factor of 4.679 bhp-hr / mi, EPA data for Mobile6 (no conversion factor yet available for MOVES2010B model)

⁽³⁾ As assumed previously

**CONGESTION MITIGATION AND AIR QUALITY
TRANSIT AND FIXED GUIDEWAY PROJECTS - VEHICLE PURCHASE/REPLACEMENT**

AGENCY: WATA
 PROJECT NAME: **Bus Vehicle Replacement**
 DESCRIPTION: Four (4) Bus Expansion
 DATE: 8/12/2016 ⁽¹⁾
 PROJECT COST: \$1,793,772

Number of New Vehicles	4 vehicles ⁽¹⁾
Average Yearly Vehicle-Miles for New Vehicles	81,000 vehicle-miles ⁽¹⁾

1 - CHANGE IN VEHICLE EMISSIONS

NEW BUS EMISSIONS:

New Vehicles	Emissions Rate	Emissions Rate	VMT	Number of Vehicles	Yearly Emissions	Yearly Emissions
	g / bhp-hr ⁽¹⁾	g/mi ⁽²⁾			g/yr	kg/yr
VOC	0.14	0.66	81,000	4	212,239	212
NOx	0.2	0.94	81,000	4	303,199	303

REDUCED AUTO EMISSIONS:

Ridership Estimate:	367 boardings/day ⁽³⁾
Vehicle Occupancy Rate:	1.15 persons/veh ⁽⁴⁾
Reduction in Daily Vehicle Trips:	87 veh trips / day
Average Trip Length:	10 miles/trip ⁽⁵⁾
Reduction in VMT:	870 miles/day

Type	Emissions Factor, g/mi ⁽⁶⁾	VMT Reduction, mi/day (above)	Emissions Reduction, g/day	Emissions Reduction, kg/day	Conversion Factor, days/yr	Emissions Reduction, kg/yr
VOC	0.067	870	578	0.58	250	145
NOx	0.207	870	693	0.69	250	173

2 - EMISSIONS REDUCTION

Reduction in Emissions	VOC -68 kg/yr
NOx	-130 kg/yr

3 - COST EFFECTIVENESS

Total Cost:	\$1,793,772 (from above)
Useful life, years:	15 ⁽⁷⁾
Annual Cost:	\$119,585

Type	Cost, \$/yr (above)	Emissions Reduction, kg/yr (above)	Cost Effectiveness, \$/kg	Cost Eff., \$/Ton
VOC	\$119,585	-68	-\$1,767.07	-\$1,602,729
NOx	\$119,585	-130	-\$920.32	-\$834,730

⁽¹⁾ From application; given values for HC as proxy value for VOC

⁽²⁾ Applying a conversion factor of 4.679 bhp-hr / mi, EPA data for Mobile6 (no conversion factor yet available for MOVES2010B model)

⁽³⁾ From applications

⁽⁴⁾ 1.15 for work trips, 1.30 for non-work trips, as previously assumed

⁽⁵⁾ Average trip length for personal vehicle trips, 2001 NHTS

⁽⁶⁾ VDOT Hampton Roads average for all vehicle types on minor arterials, 2014, 35 mph

⁽⁷⁾ As previously assumed

**CONGESTION MITIGATION AND AIR QUALITY
PROJECT EVALUATION
OTHER - BARGE SERVICE**

AGENCY: Virginia Port Authority
 PROJECT NAME: **Expanded Marine Highway Barge Service**
 LOCATION: Chesapeake Bay Marine System between Hampton Roads and Richmond Virginia
 DESCRIPTION: Mass transit for containerized cargo. Import containerized cargo boxes, ranging in size from twenty-foot equivalent units (TEU) to forty foot equivalent units(FEU), are loaded aboard the 64-express barge.
 DATE: 8/15/2016 (on application)
 PROJECT COST: **\$4,543,620** ⁽¹⁾

Project Cost	\$4,543,620 (above)
Expected Life-span of Project	5 Years ⁽¹⁾
	<hr/>
Annual Cost	\$908,724

Type	3-yr Emissions Reduction, tons ⁽¹⁾	Emissions Reduction, tons/yr	Conversion Factor, kg/ton	Emissions Reduction, kg/yr	Cost per year (above)	Cost Effectiveness, \$/ton
VOC	2	0.6666666667	907	605	\$908,724	\$1,363,086
NOx	62	21	907	18,745	\$908,724	\$43,971

⁽¹⁾ From application

APPENDIX B

RSTP Project Evaluation Worksheets

Evaluation of RSTP Applications (Utilizing HRTPO Prioritization Tool)

Table 2: Highway- Roadway Widening, New Facility, HOV Lanes, Intersection Improvements

Applicant	Project Name (code)	Total Cost	2040 LRTP Code	Project Utility (0-100)	Project Vitality (0-100)	Project Viability (0-100)	Total (0-300)
Chesapeake	Mt. Pleasant/Great Bridge Bypass (CH1RS)	\$29,500,000	2040-33	63	54	5	122
Gloucester Cty.	George Washington Memorial Highway (Route 17) Widening Phase 1 (GL1RS)	\$43,900,000	2040-40	72	63	5	140
Suffolk	Crittenden Road/Route 17 Intersection Realignment (SF6RS)	\$ 5,000,000	2040-RSTP1	39	25	25	89
Virginia Beach	Indian River Road - Phase VII-B (VB1RS)	\$12,660,000	2040-169	36	20	51	107
Virginia Beach	Laskin Road Phase 1 (VB2RS)	\$82,062,000	2040-171	41	32	56	129

Table 3: Highway- Corridor Operational Improvements

Applicant	Project Name (code)	Total Cost	2040 LRTP Code	Project Utility (0-100)	Project Vitality (0-100)	Project Viability (0-100)	Total (0-300)
Portsmouth	Elm Avenue Improvements between Navy Gates 29 and 36 (PR1RS)	\$9,750,000	2040-126	74	38	0	112

Table 6: Transit & Fixed Guideway-New or expanded service, passenger facilities, HS/intercity/and light rail, station Dev., vehicle upgrades, etc.

Applicant	Project Name (code)	Total Cost	Congestion Relief (10 pts to project w/ highest % removed; 0 pts to lowest) (0-10)	Facility Usage, Daily Ridership (20 pts to highest; 0 pts to lowest) (0-20)	Cost-Effectiveness--Subsidy/ Passenger (20 pts to lowest; 0 pts to highest) (0-20)	Air Quality (NOx reductions = 10; HC reductions = 10) (0-20)	Coverage Area (based on population = 10 pts and employment =10 pts to the highest) (0-20)	Project Readiness (detailed design and cost estimates, ready to go; 10 pts) (0-10)	Total (0-100)
HRT	Virginia Beach Operations and Maintenance Facility (HT2RS)	\$3,000,000	N/A	0	N/A	0	N/A	0	23
WATA	Upper York County/New Kent Connector - Demonstration Route (WA3RS)	\$1,308,555	<581 daily VMT	10	20,525	7	2.19	20	73
WATA	Expansion Bus Shelters (WA5RS)	\$234,000	<449 daily VMT	8	108,600	20	N/A	0	47
WATA	Transit Bus Pull-Outs (WA2RS)	\$345,300	<45 daily VMT	1	3,473	1	N/A	0	19

Table 7: Transit & Fixed Guideway- Vehicle Replacement/Purchase

Applicant	Project Name (code)	Total Cost	Average age of vehicles (FTA standard is 12 years - Bus & 4 years-Vans) (0-30)	Percent of vehicles in fleet over (12-Bus: 4-Van) years old fleet (0-30)	Emissions changes of the old and new vehicles (0-20) (0-20)	Average daily ridership / new vehicle anticipated & or purchased (0-15) (0-20)	Average mileage of the vehicles to be replaced (FTA Standards = 500,000 -Bus and 100,000- Van) (0-15)	Total (0-100) (0-15)
HRT	Bus Vehicle Replacement (HT3RS) - Paratransit Vans	\$4,725,000	4	30	100%	20	N/A	0
WATA	Four(4) Bus Purchase Expansion (WA4RS)	\$1,793,772	8	20	35%	8	N/A	0
WATA	Six (6) Bus Purchase Replacement (WA7RS)	\$3,142,710	8	20	35%	8	Nox New = .935 g/bhp-hr Old = 2.235 g/bhp-hr change = 1.3g/bhp-hr	20
							N/A	0
							420,500	14
								62

Table 8: Other Transit, Other Fixed Guideway and Transit ITS Projects

Applicant	Project Name (code)	Total Cost	Will the project increase service reliability? (0-25)	Will the project improve passenger safety, comfort, and convenience? (0-30)	Does the project improve efficiency of the transit system? (0-10)	Does the project improve the revenue collection? (0-10)	Does the project improve transit data collection system? (0-10)	Total (0-100)
Suffolk	College Drive Transit Safety Improvements (SF1RS)	\$360,726	Yes: (Provides additional access for two neighborhoods)	Yes: (convenience, safety, comfort)	30	Yes	5	No 0 0 55
WATA	Automated Passenger Counting (APC) System (WA6RS)	\$195,000	Yes	5	No	0	Yes 10 25 Yes 10 50	

Table 9: Alternatives Analysis and Feasibility Studies

Applicant	Project Name (code)	Total Cost	1. Is the study necessary to address a major issue or to revise the Plan? (0-25)	2. Is the study necessary to address a safety issue? (0-25)	3. Is the study concerned with encouraging multi-modal transportation? (0-15)	4. Does the study address the mobility or accessibility needs of the region? (0-10)	5. Is the study well defined in terms of purpose, design concept and scope? (0-20)	6. Do the goals and objectives of the study show support for economic development? (0-10)	7. Do the goals and objectives demonstrate preservation or protection of the environment? (0-10)	Total (0-100)
HRT	Peninsula Corridor DEIS/Conceptual Engineering (HT1RS)	\$8,000,000	Yes	20	Yes	5	Yes	10	Yes	10
WATA	Transportation Development Plan (TDP) - 6 Year Plan (WA1RS)	\$250,000	Yes	25	Yes	5	Yes	5	Yes	7
James City County	James City County Master Transportation Plan (JC1RS)	\$500,000	Yes	25	Yes	10	Yes	10	Yes	7
Suffolk	Suffolk Bypass/Godwin Blvd-Wilroy Rd-Pruden Blvd IMP (SF2RS)	\$2,000,000	Yes	20	Yes	15	Yes	3	Yes	7
										62

Table 11: Intelligent Transportation Systems Projects

Applicant	Project Name (code)	Total Cost	1. Will project improve flow during peak periods and special events? (0-15)	2. Will project directly reduce number or severity of roadway accidents? (0-15)	3. Will project improve LOS, increase capacity, or contribute to incident management? (0-25)	4. Does the project address the mobility or accessibility needs of the region? (0-20)	5. Does project improve linkage between operating agencies to provide traffic info to motorists? (0-10)	6. Is this project consistent with the HRTPO Long-Range Transportation Plan? (0-20)	Total (0-100)	
Newport News	Citywide Signal System Progression (NN1RS)	\$1,250,000	Yes	12	Yes	15	Improve LOS; Yes; increase Capacity-Yes; Contribute to incident mgmt-Yes	17	Yes	10
Suffolk	Downtown Signal System Upgrade (SF3RS)	\$1,650,000	Yes	10	Yes	12	Improve LOS; Yes; increase Capacity-Yes; Contribute to incident mgmt-Yes	13	Yes	10
Suffolk	Downtown Railroad Warning System (SF4RS)	\$1,250,000	Yes	5	Yes	8	Improve LOS; Yes; increase Capacity-No; Contribute to incident mgmt-Yes	10	Yes	7
Suffolk	Citywide Signal System Upgrade (SF5RS)	\$2,650,000	Yes	12	Yes	15	Improve LOS; Yes; increase Capacity-Yes; Contribute to incident mgmt-Yes	17	Yes	10

APPENDIX C

Public Project Ideas

CMAQ/RSTP
HRTPO PROJECT SELECTION PROCESS

CANDIDATE PROJECT IDEA FORM

To be considered for Congestion Mitigation and Air Quality (CMAQ) or Regional Surface Transportation Program (RSTP) funding, a proposed project must be included in the current HRTPO Long-Range Transportation Plan (LRTP). Please fill out one form for each project idea you are submitting. When you have completed the form, save it with a file name that includes your last name and a project name (example: Jones-Main St Bikeway.doc). Send an email message, with your project idea form(s) attached, to Michael S. Kimbrel, Principal Transportation Engineer, at mkimbrel@hrtpo.org. As an alternative, you may send your project idea form(s) to:

Michael S. Kimbrel
Principal Transportation Engineer
Hampton Roads Transportation Planning Organization
723 Woodlake Drive
Chesapeake, VA 23320

All project ideas submitted by the public will be acknowledged and forwarded to the appropriate locality, transit agency or state agency. The project ideas will be considered by those entities for possible submission as projects proposed for CMAQ or RSTP funding.

The deadline for submitting your project ideas is July 31, 2014.

CMAQ/RSTP Project Idea Form

Your Name:	Andrew B. Scott, P.E.	Date:	1/29/15
E-Mail:	greatscottfamily@yahoo.com	Phone:	757-681-4580
Project Name: Public Electric Vehicle Charging Station			
Project Location (include city or county in which the project is located, street name, end points): Virginia Department of Transportation 1700 N. Main Street, Suffolk, VA 23434			
Project Description (include type of project; if CMAQ project, how will it improve air quality?): Install a level 1 or 2 public electric vehicle charging station on State or City property to provide improved air quality by promoting the use of electric vehicles.			
Additional Information (If applicable, include additional data or maps as attachments.): I have purchased an electric vehicle and commute from Chesapeake to work in Suffolk daily. A public charging station would improve air quality by greatly increasing the daily use of the electric vehicle. A level 1 charging station can be as simple as providing an ordinary 110 volt outlet adjacent to a designated parking space; a level 2 charging station uses 220 volts. Installing a public charging station would advance our sustainability goals and improve our public image. The great majority of public charging stations do not charge a fee, but charging stations can be monetized.			

