

# HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION



## CMAQ/RSTP PROJECT SELECTION PROCESS 2024



T25-08

OCTOBER 2025

**HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION**  
**VOTING MEMBERS**

Robert A. Crum, Jr. – Executive Director/Secretary

**VOTING MEMBERS:**

**CHESAPEAKE**

Richard R. "Rick" West, Vice-Chair  
Ella P. Ward - Alternate

**FRANKLIN**

Paul Kaplan  
Gregory McLemore - Alternate

**GLOUCESTER COUNTY**

Phillip N. Bazzani  
Christopher A. Hutson – Alternate

**HAMPTON**

James "Jimmy" Gray, Jr.  
Carolyn Campbell – Alternate

**ISLE OF WIGHT COUNTY**

Joel C. Acree  
Rudolph Jefferson - Alternate

**JAMES CITY COUNTY**

Michael J. Hipple – Chair  
Jim Icenhour - Alternate

**NEWPORT NEWS**

Phillip D. Jones  
Cleon M. Long - Alternate

**NORFOLK**

Kenneth C. Alexander  
Martin A. Thomas, Jr. - Alternate

**POQUOSON**

David A. Hux  
Anjie Emmett - Alternate

**PORTSMOUTH**

Shannon E. Glover  
Yolanda E. Thomas - Alternate

**SOUTHAMPTON COUNTY**

William Hart Gillette  
Vacant - Alternate

**SUFFOLK**

Michael D. Duman  
Leroy Bennett - Alternate

**VIRGINIA BEACH**

Robert M. "Bobby" Dyer  
Joashua F. Schulman - Alternate

**WILLIAMSBURG**

Douglas G. Pons  
Pat Dent - Alternate

**YORK COUNTY**

Thomas G. Shepperd, Jr.  
Sheila S. Noll - Alternate

**MEMBERS OF THE VIRGINIA SENATE**

The Honorable Mamie E. Locke  
The Honorable Angelia Williams Graves

**MEMBERS OF THE VIRGINIA HOUSE OF DELEGATES**

The Honorable Jeion A. Ward  
The Honorable Bonita G. Anthony

**TRANSPORTATION DISTRICT COMMISSION OF HAMPTON ROADS**

William E. Harrell, President/Chief Executive Officer  
Ray Amoruso – Alternate

**VIRGINIA DEPARTMENT OF TRANSPORTATION**

Christopher Hall, Hampton Roads District Engineer  
Sonya Hallums-Ponton – Alternate

**VIRGINIA DEPARTMENT OF RAIL AND PUBLIC TRANSPORTATION**

Tiffany Robinson, Director  
Zach Trogdon – Alternate

**VIRGINIA PORT AUTHORITY**

Stephen A. Edwards, CEO/Executive Director  
Barbara Nelson – Alternate

**WILLIAMSBURG AREA TRANSIT AUTHORITY**

Matthew Scalia, Executive Director  
Nathaniel Rock – Alternate

## **HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION**

**NON-VOTING MEMBERS:****CHESAPEAKE**

Christopher M. Price

**FRANKLIN**

VACANT

**GLOUCESTER COUNTY**

Carol Steele

**HAMPTON**

Mary B. Bunting

**ISLE OF WIGHT COUNTY**

Donald T. Robertson

**JAMES CITY COUNTY**

Scott Stevens

**NEWPORT NEWS**

Alan Archer

**NORFOLK**

Patrick Roberts

**POQUOSON**

J. Randall Wheeler

**PORPSMOUTH**

Steven Carter

**SOUTHAMPTON COUNTY**

Brian S. Thrower

**SUFFOLK**

Kevin Hughes

**VIRGINIA BEACH**

Patrick A. Duhaney

**WILLIAMSBURG**

Andrew O. Trivette

**YORK COUNTY**

Mark L. Bellamy, Jr.

**FEDERAL HIGHWAY ADMINISTRATION**

Edward Ofori, Division Administrator – Virginia Division

**FEDERAL TRANSIT ADMINISTRATION**

Terry Garcia-Crews, Region 3 Administrator

**FEDERAL AVIATION ADMINISTRATION**

Jeffrey W. Breeden, Airport Planner, Washington Airports District Office

**VIRGINIA DEPARTMENT OF AVIATION**

Greg Campbell, Director

**PENINSULA AIRPORT COMMISSION**

John Borden, Interim Executive Director

**NORFOLK AIRPORT AUTHORITY**

Mark Perryman, Executive Director/CEO

**COMMUNITY ADVISORY COMMITTEE**

Lauren Roberts Carter, Chair

**FREIGHT TRANSPORTATION ADVISORY COMMITTEE**

Robert Eveleigh, Chair

**MILITARY LIAISONS**

Steven Dillenburger, Colonel, U.S. Air Force/U.S. Army

Aaron Demo, Captain, U.S. Coast Guard

Shane Tanner, Captain, U.S. Navy

**INVITED PARTICIPANTS**

B. Wayne Coleman, CTB

Frederick T. Stant, III, CTB

Vacant

For accommodation requests or cost-free [translation assistance](#), please contact Quan McLaurin ([gmclaurin@hrpdcva.gov](mailto:gmclaurin@hrpdcva.gov)).

El [servicio de traducción para los documentos](#) de HRPDC y HRTPO se ofrece sin costo a los miembros de la comunidad. Para recibir asistencia, comuníquese con Quan McLaurin ([gmclaurin@hrpdcva.gov](mailto:gmclaurin@hrpdcva.gov)).

Libreng ibinibigay sa mga miyembro ng komunidad ang [suporta sa pagsasalin para sa mga dokumentong](#) HRPDC at HRTPO. Para sa tulong, kumontak kay Quan McLaurin ([gmclaurin@hrpdcva.gov](mailto:gmclaurin@hrpdcva.gov)).

<https://www.hrtpo.org/translate>

## REPORT DOCUMENTATION

**TITLE**

HRTPO CMAQ/RSTP Project Selection Process  
2024

**REPORT DATE**

October 2025

**GRANT/SPONSORING AGENCY**

FHWA/FTA/VDOT/DRPT/LOCAL  
FUNDS

**PROJECT MANAGER**

John V. Mihaly

**ORGANIZATION NAME,****ADDRESS AND TELEPHONE**

Hampton Roads Transportation  
Planning Organization  
723 Woodlake Drive  
Chesapeake, Virginia 23320  
(757) 420-8300  
<http://www.hrtpo.org>

**PROJECT STAFF**

Kathlene Grauberger  
Matthew Harrington

**ABSTRACT**

This report summarizes the 2024 selection process for projects to be funded under the Congestion Mitigation and Air Quality Improvement Program (CMAQ) and Regional Surface Transportation Program (RSTP). Projects selected for funding as part of this process received allocations of CMAQ/RSTP funds for Fiscal Year 2031.

**ACKNOWLEDGMENTS**

Prepared in cooperation with the U.S. Department of Transportation (USDOT), Federal Highway Administration (FHWA), and Virginia Department of Transportation (VDOT). The contents of this report reflect the views of the Hampton Roads Transportation Planning Organization (HRTPO). The HRTPO is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the FHWA, VDOT or Hampton Roads Planning District Commission. This report does not constitute a standard, specification, or regulation. FHWA or VDOT acceptance of this report as evidence of fulfillment of the objectives of this planning study does not constitute endorsement/approval of the need for any recommended improvements nor does it constitute approval of their location and design or a commitment to fund any such improvements. Additional project level environmental impact assessments and/or studies of alternatives may be necessary.

## **REPORT PRODUCTION STAFF**

|                        |                                    |
|------------------------|------------------------------------|
| Robert A. Crum, Jr.    | Executive Director                 |
| Pavithra Parthasarathi | Deputy Executive Director          |
| John V. Mihaly         | Principal Transportation Planner   |
| Jeffrey K. Raliski     | Transportation Analyst III         |
| Kathlene Grauberger    | Transportation Planner II          |
| Matthew Harrington     | Transportation Planner             |
| Andrew Margason        | General Services Manager           |
| Christopher Vaigneur   | Assistant General Services Manager |

## **NON-DISCRIMINATION**

The HRTPO assures that no person shall, on the ground of race, color, national origin, handicap, sex, age, or income status as provided by Title VI of the Civil Rights Act of 1964 and subsequent authorities, be excluded from participation in, be denied the benefits of, or be otherwise subject to discrimination under any program or activity. The HRTPO Title VI Plan provides this assurance, information about HRTPO responsibilities, and a Discrimination Complaint Form.

**HAMPTON ROADS TRANSPORTATION PLANNING ORGANIZATION  
CMAQ/RSTP PROJECT SELECTION PROCESS**

**2024**

*This report was included in the Unified Planning Work Program for Fiscal Year 2025, which was approved by the Board of the Hampton Roads Transportation Planning Organization on May 16, 2024, and updated on November 21, 2024.*

**PREPARED BY:**



**This Page Intentionally Left Blank**

## TABLE OF CONTENTS

|                                                   |           |
|---------------------------------------------------|-----------|
| <b>Section I – Executive Summary .....</b>        | <b>1</b>  |
| <b>Section II - Background .....</b>              | <b>5</b>  |
| Introduction .....                                | 6         |
| Project Selection Process .....                   | 8         |
| Public Participation .....                        | 9         |
| <b>Section III – CMAQ Project Selection .....</b> | <b>11</b> |
| <b>Section IV – RSTP Project Selection .....</b>  | <b>21</b> |
| <b>Section V – Appendix</b>                       |           |
| Project Selection Worksheets: CMAQ Projects ..... | 29        |

## **LIST OF MAPS AND TABLES**

|                                                                                                          |       |
|----------------------------------------------------------------------------------------------------------|-------|
| Map 1   Projects Selected for CMAQ Allocations .....                                                     | 18    |
| Map 2   Projects Selected for RSTP Allocations .....                                                     | 26    |
| Table 1   FY 2026-2031 CMAQ and RSTP Funding: Available Funding, Current Allocations, and Reserves ..... | 9     |
| Table 2   2024 New CMAQ Applications .....                                                               | 13    |
| Table 3   New CMAQ Application Scoring and Ranking Summary.....                                          | 14    |
| Table 4   FY 2031 Allocations to Previously Approved and New CMAQ Projects.....                          | 16-17 |
| Table 5   FY 2031 Allocations to Previously Approved RSTP Projects.....                                  | 23-24 |

## **REPORT ORGANIZATION**

This report has been organized into five sections:

### **Section I – Executive Summary**

The Executive Summary briefly describes the CMAQ and RSTP project selection process for FY 2031.

### **Section II – Background**

The Background section describes the HRTPO CMAQ/RSTP project selection process and associated public participation activities.

### **Section III – CMAQ Project Selection**

The CMAQ Project Selection section describes the process by which projects were selected to receive allocations of CMAQ funds, including detailed information for each project and a map of project locations (if applicable).

### **Section IV – RSTP Project Selection**

The RSTP Project Selection section describes the process by which projects were selected to receive allocations of RSTP funds, including detailed information for each project and a map of project locations (if applicable).

### **Section V – Appendix**

The appendix of this report includes the detailed worksheets used in the analysis of each CMAQ candidate project submitted by member localities/agencies.

**This Page Intentionally Left Blank**

## **Section I**

### ***Executive Summary***

## EXECUTIVE SUMMARY

As the Metropolitan Planning Organization (MPO) for the Hampton Roads area, the Hampton Roads Transportation Planning Organization (HRTPO) is responsible for project selection and allocation of funds under two federal funding programs – the Congestion Mitigation and Air Quality (CMAQ) Improvement Program and the Regional Surface Transportation Program (RSTP). The process used by the HRTPO to select projects to receive funds from these two programs is referred to as the CMAQ/RSTP Project Selection Process. The project selection process is conducted annually, normally beginning in July. The approved funding allocations are for Fiscal Year 2031 and are advanced under the CMAQ and RSTP initiatives. The CMAQ program provides federal funding for projects that improve air quality. RSTP funding is available more generally for a wide variety of transportation project categories.

This report summarizes the work of selecting CMAQ and RSTP projects during the 2024 CMAQ/RSTP Project Selection Process. Selected projects received awards of CMAQ or RSTP funds for Fiscal Year (FY) 2031 (July 2030 – June 2031). The region conducts the CMAQ/RSTP Project Selection Process annually. CMAQ and RSTP project selections and allocations were developed with the assistance of two groups: the Transportation Programming Subcommittee (TPS) and the Transportation Technical Advisory Committee (TTAC). These groups, which include staff member representatives from all HRTPO member jurisdictions and partner agencies, provide recommendations and technical support to the HRTPO Board on matters that concern the transportation planning and programming process. The complete competitive process used to solicit, evaluate, and select projects to receive funds from these two programs has been approved by the HRTPO Board and is documented in the *Guide to the HRTPO CMAQ/RSTP Project Selection Process* (<https://www.hrtpo.org/264/Congestion-Mitigation-Air-Quality-Improv>).

For FY 2031, it is estimated that approximately \$37M in RSTP funding will be available to the region. However, before soliciting any new project requests, the funding requirements of current projects with “Penciled-in” needs in FY 2031 must be reviewed and considered. “Penciled-in” requests are funding requests included in an original CMAQ or RSTP project application for years beyond the first year for which funds were requested.

Since the “penciled-in” amounts for previously approved RSTP projects exceed the anticipated available funding in FY 2031, the Hampton Roads Transportation Planning Organization (HRTPO) Board recommended at its July 18, 2024 meeting not to accept new projects for the 2024 RSTP Project Selection Process. Instead, all available FY 2031 RSTP funding will be directed to previously approved projects.

For the CMAQ selection process, it was determined that approximately \$13 million of the \$15.4 million total projected to be available in FY 2031 CMAQ funding would remain for distribution after consideration of all “penciled-in” amounts. Consequently, new CMAQ project applications were accepted during this funding cycle. For the 2024 CMAQ Project Selection Process, HRTPO staff received applications for 29 proposed CMAQ projects. HRTPO staff evaluated and scored the proposed projects using the methodologies approved by the TTAC and HRTPO Board as outlined in the Guide to the HRTPO CMAQ and RSTP Project Selection Process in the following link.

<https://www.hrtpo.org/DocumentCenter/View/685/Guide-to-the-HRTPO-CMAQ--RSTP-Project-Selection-Process-PDF?bidId=>

Based on the funding recommendations developed by TPS and TTAC, the Hampton Roads Transportation Planning Organization (HRTPO), on January 16, 2025, approved \$49.7M in funding from the CMAQ and RSTP programs for 31 individual improvement projects all across the region.

For the CMAQ program, new funding recommendations include nine traffic signal system upgrades, two transit bus replacement programs, one intersection improvement, and three pedestrian enhancements and improvements. The largest single award is \$6,000,000 to Hampton Roads Transit (HRT) for bus vehicle replacement. The full 2024 CMAQ project selection process is reviewed in detail in Section III.

Laskin Road improvements in Virginia Beach represent the largest RSTP funding allocation at approximately \$9.23 million. Reflecting the great flexibility of the RSTP program, the remaining twelve funding allocations are divided between the regional travel demand management program, six highway widening and improvement projects, two traffic signal system improvement programs, one safety enhancement effort, two new pedestrian paths, and implementation support for a new transit service. The full 2024 RSTP project selection process is reviewed in detail in Section IV.

**This Page Intentionally Left Blank**

## **Section II**

### ***Background***

## INTRODUCTION

The Hampton Roads Transportation Planning Organization (HRTPO) is the Metropolitan Planning Organization (MPO) for the Hampton Roads region of Virginia. As such, it is a federally mandated transportation policy board comprised of representatives from local, state, and federal governments, transit agencies, and other stakeholders, and is responsible for transportation planning and programming for the Hampton Roads Metropolitan Planning Area (MPA). The MPA is comprised of the cities of Chesapeake, Hampton, Newport News, Norfolk, Poquoson, Portsmouth, Suffolk, Virginia Beach, and Williamsburg; the counties of Isle of Wight, James City, and York; and a portion of the City of Franklin and the Counties of Gloucester and Southampton. Among its functions, the HRTPO since the early 1990's has been responsible for project selection and allocation of funds under two federal programs – the Congestion Mitigation and Air Quality (CMAQ) Improvement Program and the Regional Surface Transportation Program (RSTP). More recently, the HRTPO has also been charged with making project selection and funding allocations decisions for the federal Carbon Reduction Program (CRP), which is managed under a separate process.

The CMAQ Program provides funding to state departments of transportation (DOTs), local governments, and transit agencies for projects and programs that help meet the requirements of the Clean Air Act by reducing mobile source emissions and regional congestion on transportation networks. Eligible CMAQ funded activities include efforts such as transit improvements, travel demand management strategies, congestion relief efforts (such as high occupancy vehicle lanes), diesel retrofit projects, alternative fuel vehicles and infrastructure, and medium- or heavy-duty zero emission vehicles and related charging equipment. This funding is intended for areas designated by the U.S. Environmental Protection Agency (EPA) as nonattainment or maintenance areas with regard to the National Ambient Air Quality Standards (NAAQS).

Transportation Conformity is a critical process mandated by the Clean Air Act to ensure that our regional transportation plans and programs align with federal and state air quality goals. It helps make sure transportation activities do not worsen air quality or delay the attainment of National Ambient Air Quality Standards (NAAQS), which are set by the Environmental Protection Agency (EPA) to protect public health and the environment.

The transportation conformity rule only applies in areas that do not currently meet or have not met the NAAQS in the past. The EPA designates these areas as nonattainment or maintenance areas, respectively. While the Hampton Roads region currently meets all NAAQS, it was previously in maintenance for the 1997 eight-hour ozone NAAQS. Although this standard was revoked by the EPA in 2015, the *South Coast Air Quality Management District v. EPA* court decision reinstated the requirement for conformity determinations in areas like Hampton Roads, which are now classified as "orphan maintenance areas."

Due to the region's status as an orphan maintenance area, the Hampton Roads region is subject to streamlined transportation conformity requirements for updates and amendments to the Long-Range Transportation Plan (LRTP) and Transportation Improvement Program (TIP). These requirements involve conducting a Regional Conformity Assessment (RCA) that focuses on

consultation, fiscal constraint, and proper documentation to maintain compliance with air quality standards.

The Surface Transportation Program (STP) provides federal funding that may be used by states and localities for a wide range of highway and transit projects. Regional Surface Transportation Program (RSTP) funds are STP funds that are apportioned to specific regions within a state.

This report summarizes the work of selecting CMAQ and RSTP projects during the CMAQ/RSTP Project Selection Process of 2024. Projects selected received allocations of CMAQ or RSTP funds for FY 2031.

## **ELIGIBLE RECIPIENTS**

Eligible recipients of CMAQ and RSTP funds in Hampton Roads include the localities within the MPA, Hampton Roads Transit (HRT), the Williamsburg Area Transit Authority (WATA), Suffolk Transit, state transportation agencies, the Virginia Port Authority, National Park Service, and the HRTPO.

## PROJECT SELECTION PROCESS

The process for obtaining CMAQ or RSTP funding for transportation projects is a competitive one. According to the CMAQ/RSTP Project Selection Process that has been approved by the HRTPO Board (<https://www.hrtpo.org/DocumentCenter/View/685/Guide-to-the-HRTPO-CMAQ--RSTP-Project-Selection-Process-PDF?bidId=>), all project proposals are analyzed by HRTPO staff using a specific set of evaluation criteria. The proposed projects are then ranked based on the results of the analyses. All proposed projects must be consistent with the current HRTPO Long-Range Transportation Plan (LRTP). The LRTP is a fiscal constrained transportation plan for the Hampton Roads MPA with a planning horizon of at least 20 years.

The Transportation Programming Subcommittee (TPS) – taking into account the available funding, policies, and priorities of the HRTPO and Commonwealth Transportation Board (CTB) and using the ranked project lists as a guide – produces a list of recommended projects and funding allocations for consideration by the Transportation Technical Advisory Committee (TTAC) and the HRTPO Board.

The schedule used for the 2024 CMAQ/RSTP project selection process is listed below. Table 1 on the following page details the available funding, current funding allocations, and available totals currently held in reserve for both the CMAQ and RSTP programs under consideration and discussion during the current project selection process.

### CMAQ and RSTP Project Selection Process Steps and Deadlines

|                   |                                                                                                                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>8/01/2024</b>  | • Deadline for Public to submit projects to be considered for CMAQ funding.                                                                                                      |
| <b>8/15/2024</b>  | • Deadline for CMAQ Applications for project proposals from localities, transit agencies, and state transportation agencies.                                                     |
| <b>11/15/2024</b> | • CMAQ Project evaluations completed by HRYPO staff                                                                                                                              |
| <b>11/22/2024</b> | • Transportation Programming Subcommittee (TPS) meeting to review proposed projects and recommend CMAQ and RSTP funding allocations.                                             |
| <b>01/08/2025</b> | • Transportation Technical Advisory Committee (TTAC) meeting to consider recommendations of the TPS and make CMAQ and RSTP recommendations for consideration by the HRTPO Board. |
| <b>01/16/2025</b> | • HRTPO Board meeting to consider TTAC recommendations regarding CMAQ and RSTP projects and funding allocations for final approval.                                              |

**Table 1 | FY 2026-2031 CMAQ and RSTP Funding: Available Funding, Current Allocations, and Reserves**

**Table 1: FY 2026 - FY 2031 CMAQ and RSTP Funding Available Funding, Current Allocations, and Reserves**

| CMAQ        | Previous    | FY - 26      | FY - 27      | FY - 28      | FY - 29      | FY - 30      | FY - 31      | TOTAL       |
|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| Marks       | \$0         | \$13,855,965 | \$14,445,885 | \$14,734,803 | \$15,029,499 | \$15,330,089 | \$15,636,690 |             |
| Allocations | \$0         | \$13,855,965 | \$14,445,885 | \$14,734,803 | \$14,981,424 | \$15,330,089 | \$14,719,763 |             |
| Available   | \$4,023,682 | \$0          | \$0          | \$0          | \$48,075     | \$0          | \$916,927    | \$4,988,684 |

| RSTP        | Previous    | FY - 26      | FY - 27      | FY - 28      | FY - 29      | FY - 30      | FY - 31      | TOTAL        |
|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Marks       | \$0         | \$36,489,679 | \$37,947,203 | \$38,706,146 | \$39,480,269 | \$40,269,874 | \$41,075,271 |              |
| Allocations | \$0         | \$36,489,679 | \$37,947,203 | \$38,706,146 | \$37,060,565 | \$37,078,516 | \$35,023,932 |              |
| Available   | \$2,794,076 | \$0          | \$0          | \$0          | \$2,419,704  | \$3,191,358  | \$6,051,339  | \$14,456,477 |

Franklin and Southampton County Set-aside \$1,878,866

Prepared by VDOT and HRTPO staff (June 20, 2025)

## PUBLIC PARTICIPATION

The HRTPO is fully committed to involving and collaborating with the Hampton Roads community in a public involvement process that is grounded in partnership, mutual problem solving, and understanding. In other words, a process whereby the public feels a sense of ownership and satisfaction in knowing their voice has been legitimately heard and their thoughts, ideas, and opinions have the potential to impact future HRTPO decisions. The long term effect that such decisions can have on so many lives makes it critical that the public be provided with ongoing, dynamic opportunities to participate in the planning and programming processes associated with the complex system of roads, mass transit, rail, waterways, pedestrian and bicycle facilities, and related infrastructure that make up the transportation system.

The HRTPO understands “the public” to mean all of those who have the potential to affect or be affected by the Hampton Roads transportation system. From bicyclists to motorists, public transportation users to freight haulers, social to environmental advocates – Hampton Roads residents have a stake in the future of our transportation system. Equally important, the HRTPO recognizes that not all communities and community members have enjoyed the same level of access or representation in transportation and other decisions made by public agencies. Therefore, as part of its public involvement strategy, the HRTPO takes steps to engage with all communities including minorities.

In addition to the invitation for public involvement at the beginning of the process, all formal meetings associated with the CMAQ/RSTP Project Selection Process, including the agendas for meetings of both the Transportation Technical Advisory Committee (TTAC) and HRTPO Board,

included an opportunity for public comment at the start of each session. No public comments regarding the project selection process were received, orally or in writing, during these meetings.

A public notice soliciting CMAQ and RSTP project ideas from the public was posted to the HRTPO website in July 2024. In addition, a CMAQ/RSTP Project Idea Form was provided for use by the public with a submission deadline of August 1, 2024. Project ideas submitted by the public are reviewed by HRTPO staff and then forwarded to the appropriate locality or agency for consideration. No project ideas were received from the public for this cycle.

## **Section III**

### ***CMAQ Project Selection***

## CMAQ PROJECT SELECTION

In Hampton Roads, projects are selected for funding with CMAQ Improvement Program funds based on the amount of air quality improvement expected per dollar spent. This is analyzed in terms of a reduction in the emissions of Volatile Organic Compounds (VOCs) and Nitrogen Oxides (NOx), which are precursors of ozone depletion. The air quality aspect of the CMAQ analysis allows all types of CMAQ projects to be compared against one another. Details on the policies, procedures, and analysis methodologies used for CMAQ project selection are included in the ***Guide to the HRTPO CMAQ and RSTP Project Selection Process***, which may be accessed on the HRTPO website at <https://www.hrtpo.org/DocumentCenter/View/685/Guide-to-the-HRTPO-CMAQ--RSTP-Project-Selection-Process-PDF?bidId=>.

To help ensure that all of the necessary information is included with each project proposal, and to provide consistency in the way that project information is submitted, the HRTPO staff developed application forms to be utilized for the submission of CMAQ project proposals. The ***Candidate Project Application Forms*** for the various CMAQ project categories may be accessed on the HRTPO website at <https://www.hrtpo.org/264/Congestion-Mitigation-Air-Quality-Improv>.

The total CMAQ funding expected to be available for FY 2031, including the 20 percent state match, is approximately \$15.4 million. Prior to considering new projects to receive CMAQ allocations, the status of previously approved projects is reviewed to determine whether additional funding is required to allow for the completion of a project or project phase. The review of previously approved projects also includes determining whether those projects are progressing on schedule or whether funds should be:

1. Readjusted to better correspond with any updated implementation schedules, or
2. Reallocated to other projects.

During the 2024 Project Selection Process, four requests were made for additional funding for currently approved “penciled in” CMAQ projects with funding needs in FY 2031. In addition, 29 CMAQ applications for new funding were received, reviewed, and scored. Table 2 lists all new projects proposed for CMAQ funding during the 2024 project selection process. As shown in the table, the 29 candidate projects had a total funding request of approximately \$163 million. The total CMAQ funding requested in FY 2031 was \$38.6 million.

Table 3 shows the scoring and ranking of the 29 new candidate projects (existing projects are not rescored). As shown in the table, each project was scored and ranked based on its cost-effectiveness in reducing VOC and NOx emissions. The ranks for VOC and NOx reduction were summed to produce the composite ranking. The detailed evaluation and scoring worksheets for each of the CMAQ candidate projects are included in Appendix A.

**Table 2 | 2024 New CMAQ Project Applications**

| <b>Number</b> | <b>Code</b>        | <b>Applicant</b>        | <b>Project Name</b>                                                  | <b>Total Cost</b>     | <b>Total CMAQ Request</b> | <b>Total FY-31 Request</b> |
|---------------|--------------------|-------------------------|----------------------------------------------------------------------|-----------------------|---------------------------|----------------------------|
| 1             | CH1CM              | Chesapeake              | Citywide Signal Retiming -- Phases 1-5                               | \$ 750,000            | \$ 750,000                | \$ 150,000                 |
| 2             | CH2CM              | Chesapeake              | Cedar Rd/S Battlefield Blvd Turn Lane                                | \$ 3,600,000          | \$ 3,600,000              | \$ 250,000                 |
| 3             | CH3CM              | Chesapeake              | Cedar Road Sidewalk -- Cedar Lakes to Bartell E                      | \$ 1,200,000          | \$ 1,200,000              | \$ 110,000                 |
| 4             | GC1CM              | Gloucester County       | Providence Road and Route 17 Turn Lane                               | \$ 5,775,254          | \$ 5,775,254              | \$ 1,000,000               |
| 5             | GC2CM              | Gloucester County       | Greate Road Siedwalk                                                 | \$ 5,246,185          | \$ 5,246,185              | \$ 1,000,000               |
| 6             | HA1CM              | Hampton                 | Traffic Signal Systems Retiming                                      | \$ 1,500,000          | \$ 1,500,000              | \$ 1,500,000               |
| 7             | HR1CM              | Hampton Roads Transit   | Bus Vehicle Replacement                                              | \$ 58,466,000         | \$ 36,654,500             | \$ 11,940,500              |
| 8             | IW1CM              | Isle of Wight County    | Red Oaks Shared Use Path                                             | \$ 2,017,000          | \$ 2,017,000              | \$ 2,017,000               |
| 9             | JC1CM              | James City County       | Ironbound Road Sidewalk                                              | \$ 2,788,459          | \$ 2,788,459              | \$ 269,448                 |
| 10            | JC2CM              | James City County       | Richmond Road Sidewalk Infill Segment 1                              | \$ 1,356,365          | \$ 1,356,365              | \$ 240,509                 |
| 11            | JC3CM              | James City County       | Matoaka Elementary School Sidewalk Improvements                      | \$ 2,618,878          | \$ 2,618,878              | \$ 265,980                 |
| 12            | JC4CM              | James City County       | Transit Stop Improvements                                            | \$ 1,250,000          | \$ 1,250,000              | \$ 250,000                 |
| 13            | NN1CM              | Newport News            | Citywide ITS Upgrades                                                | \$ 1,500,000          | \$ 1,500,000              | \$ 500,000                 |
| 14            | NN2CM              | Newport News            | Citywide Signal Retiming                                             | \$ 1,500,000          | \$ 1,500,000              | \$ 500,000                 |
| 15            | NN3CM              | Newport News            | Warwick Boulevard/Main Street Intersection Improvements              | \$ 1,100,000          | \$ 1,100,000              | \$ 190,000                 |
| 16            | NO1CM              | Norfolk                 | Advanced Traffic Management System (ATMS) Phase 5                    | \$ 5,406,600          | \$ 5,406,600              | \$ 163,800                 |
| 17            | NO2CM              | Norfolk                 | Citywide Signal Retiming Phase VI                                    | \$ 1,413,620          | \$ 1,413,620              | \$ 1,060,300               |
| 18            | NO3CM              | Norfolk                 | Citywide Signal System Upgrades                                      | \$ 7,424,060          | \$ 7,424,060              | \$ 374,400                 |
| 19            | NO4CM              | Norfolk                 | Traffic Signal Detection Upgrades                                    | \$ 3,430,900          | \$ 3,430,900              | \$ 99,000                  |
| 20            | NO5CM              | Norfolk                 | Elizabeth River Trail - Eastern Extension Comprehensive Study        | \$ 1,000,000          | \$ 1,000,000              | \$ 500,000                 |
| 21            | NO6CM / UPC 113201 | Norfolk                 | East Little Creek Road/Shore Drive Intersection Improvements         | \$ 3,320,450          | \$ 3,320,450              | \$ 255,680                 |
| 22            | NO7CM              | Norfolk                 | Norview Avenue/Azalea Garden Road Intersection Improvements          | \$ 3,018,450          | \$ 3,018,450              | \$ 174,400                 |
| 23            | NO8CM              | Norfolk                 | Traffic Management Center (TMC) Upgrade                              | \$ 642,090            | \$ 642,090                | \$ 44,900                  |
| 24            | SU1CM              | Suffolk                 | South Quay Road at O'Kelly Drive Turn Lane                           | \$ 2,815,000          | \$ 2,815,000              | \$ 400,000                 |
| 25            | SU2CM              | Suffolk                 | Plummer Boulevard Extension                                          | \$ 8,550,000          | \$ 8,550,000              | \$ 850,000                 |
| 26            | VB1CM              | Virginia Beach          | Citywide Traffic Signal Retiming                                     | \$ 1,232,000          | \$ 1,232,000              | \$ 616,000                 |
| 27            | VB2CM              | Virginia Beach          | Pacific Avenue Turn Lane Improvements at 17th Street and 22nd Street | \$ 32,864,643         | \$ 29,864,643             | \$ 7,900,338               |
| 28            | VP1CM / UPC 103928 | Virginia Port Authority | Green Operator Program                                               | \$ 12,000,000         | \$ 12,000,000             | \$ 3,000,000               |
| 29            | WA1CM              | WATA                    | Bus Vehicle Replacement                                              | \$ 13,909,079         | \$ 13,909,079             | \$ 2,962,820               |
| <b>TOTAL</b>  |                    |                         |                                                                      | <b>\$ 187,695,033</b> | <b>\$ 162,883,533</b>     | <b>\$ 38,585,075</b>       |

**Table 3 | 2024 New CMAQ Project Applications Scoring and Ranking Summary**

| Jurisdiction                   | Project Description                                                  | Rank | Cost-Effectiveness |               | Score |     |                        |  |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------------------|------|--------------------|---------------|-------|-----|------------------------|--|--|--|--|--|--|
| Previously Approved Projects   |                                                                      |      |                    |               |       |     |                        |  |  |  |  |  |  |
| <i>Chesapeake</i>              | Citywide Traffic Signal System Upgrade                               |      | VOC                | NOx           | VOC   | NOx | Composite <sup>1</sup> |  |  |  |  |  |  |
| <i>Portsmouth</i>              | Citywide Traffic Signal System Upgrades                              |      |                    |               |       |     |                        |  |  |  |  |  |  |
| <i>Virginia Port Authority</i> | Green Operator Program                                               |      |                    |               |       |     |                        |  |  |  |  |  |  |
| <i>Norfolk</i>                 | 26th Street/Lafayette Blvd Lane Repurposing                          |      |                    |               |       |     |                        |  |  |  |  |  |  |
| Total                          |                                                                      |      |                    |               |       |     |                        |  |  |  |  |  |  |
| New Candidate Projects         |                                                                      |      |                    |               |       |     |                        |  |  |  |  |  |  |
| <i>Norfolk</i>                 | Traffic Management Center (TMC) Upgrade                              | 1    | \$10,764           | \$11,483      | 1     | 1   | 2                      |  |  |  |  |  |  |
| <i>Norfolk</i>                 | Citywide Signal Retiming Phase VI                                    | 2    | \$54,624           | \$58,272      | 2     | 4   | 6                      |  |  |  |  |  |  |
| <i>Hampton Roads Transit</i>   | Bus Vehicle Replacement                                              | 3    | \$95,149           | \$46,181      | 5     | 2   | 7                      |  |  |  |  |  |  |
| <i>Virginia Beach</i>          | Citywide Traffic Signal Retiming                                     | 4    | \$59,743           | \$63,733      | 3     | 5   | 8                      |  |  |  |  |  |  |
| <i>Chesapeake</i>              | Citywide Signal Retiming -- Phases 1-5                               | 5    | \$326,830          | \$56,123      | 7     | 3   | 10                     |  |  |  |  |  |  |
| <i>Norfolk</i>                 | Advanced Traffic Management System (ATMS) Phase 5                    | 6    | \$90,640           | \$96,693      | 4     | 8   | 12                     |  |  |  |  |  |  |
| <i>Newport News</i>            | Citywide ITS Upgrades                                                | 7    | \$554,607          | \$95,236      | 8     | 6   | 14                     |  |  |  |  |  |  |
| <i>Newport News</i>            | Citywide Signal Retiming                                             | T8   | \$554,607          | \$95,236      | 9     | 7   | 16                     |  |  |  |  |  |  |
| <i>Norfolk</i>                 | Citywide Signal System Upgrades                                      | T8   | \$293,194          | \$312,774     | 6     | 10  | 16                     |  |  |  |  |  |  |
| <i>Hampton</i>                 | Traffic Signal Systems Retiming                                      | 10   | \$792,539          | \$136,093     | 11    | 9   | 20                     |  |  |  |  |  |  |
| <i>Norfolk</i>                 | Traffic Signal Detection Upgrades                                    | 11   | \$568,650          | \$606,625     | 10    | 12  | 22                     |  |  |  |  |  |  |
| <i>WATA</i>                    | Bus Vehicle Replacement                                              | 12   | \$943,026          | \$457,703     | 12    | 11  | 23                     |  |  |  |  |  |  |
| <i>Newport News</i>            | Warwick Boulevard/Main Street Intersection Improvements              | 13   | \$4,325,473        | \$742,761     | 13    | 13  | 26                     |  |  |  |  |  |  |
| <i>James City County</i>       | Richmond Road Sidewalk Infill Segment 1                              | 14   | \$6,729,496        | \$4,953,737   | 14    | 14  | 28                     |  |  |  |  |  |  |
| <i>Chesapeake</i>              | Cedar Road Sidewalk -- Cedar Lakes to Bartell E                      | 15   | \$8,100,941        | \$5,963,290   | 15    | 15  | 30                     |  |  |  |  |  |  |
| <i>Virginia Port Authority</i> | Green Operator Program                                               | 16   | \$8,214,609        | \$8,763,187   | 16    | 16  | 32                     |  |  |  |  |  |  |
| <i>James City County</i>       | Matoaka Elementary School Sidewalk Improvements                      | 17   | \$16,886,491       | \$12,430,536  | 17    | 18  | 35                     |  |  |  |  |  |  |
| <i>Chesapeake</i>              | Cedar Rd/S Battlefield Blvd Turn Lane                                | 18   | \$53,231,425       | \$9,140,784   | 20    | 17  | 37                     |  |  |  |  |  |  |
| <i>Isle of Wight County</i>    | Red Oaks Shared Use Path                                             | 18   | \$19,094,167       | \$14,055,657  | 18    | 19  | 37                     |  |  |  |  |  |  |
| <i>Norfolk</i>                 | Norview Avenue/Azalea Garden Road Intersection Improvements          | T20  | \$131,160,502      | \$22,522,596  | 21    | 20  | 41                     |  |  |  |  |  |  |
| <i>Gloucester County</i>       | Greate Road Sidewalk                                                 | T20  | \$43,207,353       | \$31,805,930  | 19    | 22  | 41                     |  |  |  |  |  |  |
| <i>Norfolk</i>                 | East Little Creek Road/Shore Drive Intersection Improvements         | 22   | \$132,491,820      | \$22,751,207  | 22    | 21  | 43                     |  |  |  |  |  |  |
| <i>Gloucester County</i>       | Providence Road and Route 17 Turn Lane                               | 23   | \$300,159,971      | \$51,542,817  | 23    | 23  | 46                     |  |  |  |  |  |  |
| <i>Suffolk</i>                 | South Quay Road at O'Kelly Drive Turn Lane                           | 24   | \$940,006,749      | \$161,415,913 | 25    | 24  | 49                     |  |  |  |  |  |  |
| <i>James City County</i>       | Transit Stop Improvements                                            | 25   | \$554,416,758      | \$298,605,979 | 24    | 26  | 50                     |  |  |  |  |  |  |
| <i>Virginia Beach</i>          | Pacific Avenue Turn Lane Improvements at 17th Street and 22nd Street | 26   | \$1,541,508,359    | \$264,704,461 | 26    | 25  | 51                     |  |  |  |  |  |  |
| <i>Norfolk</i>                 | Elizabeth River Trail - Eastern Extension Comprehensive Study        | T27  | No Ranking         | No Ranking    | 27    | 27  | 54                     |  |  |  |  |  |  |
| <i>James City County</i>       | Ironbound Road Sidewalk                                              | T27  | No Reduction       | No Reduction  | 27    | 27  | 54                     |  |  |  |  |  |  |
| <i>Suffolk</i>                 | Plummer Boulevard Extension                                          | 29   | Ineligible         | Ineligible    | 29    | 29  | 58                     |  |  |  |  |  |  |

<sup>1</sup>The Composite Score is computed as follows:

First, projects are evaluated for their estimated impacts on the reduction of VOC's and NOx.

Second, projects are sorted in ascending order based on the Cost/Benefit for VOC reduction and numbered sequentially. Lower numbers are better.

Third, projects are sorted in ascending order based on the Cost/Benefit for NOx reduction and numbered sequentially. Lower numbers are better.

Finally, the sequential numbers for VOC reduction and NOx reduction are added together to produce the Composite Score. Lower numbers are better.

The Cost-Effectiveness figures represent \$/ton of pollutants (NOx, VOC) removed based on the annualized cost of the project.

\*prepared by HRTPO Staff November 11, 2024

(1) Listed Previously Approved Projects need additional FY 2031 funding (2) T designates Tied Scores

The TPS subsequently met on November 22, 2024 and, using the project scores as a guide, decided funding allocation recommendations for both existing and new CMAQ projects in FY 2031. The Transportation Technical Advisory Committee (TTAC) endorsed these recommended allocations before being advanced to the HRTPO Board for final approval.

## **APPROVED CMAQ PROJECT SELECTION AND FUNDING ALLOCATIONS**

During the January 16, 2025 meeting, the HRTPO Board approved the following actions regarding CMAQ funding for FY 2031:

- Four current CMAQ projects were selected to receive a total of \$2.4 million in FY 2031 funding.
- Fifteen new CMAQ projects were selected to receive a total of \$12.3 million in FY 2031 funding.
- A reserve balance of \$642,142 in FY 2031 funding was retained.

The approved CMAQ projects are listed in Table 4 on the following page and summarized individually below. Map 1 on Page 21 displays the geographic location of the FY 2031 CMAQ allocations where feasible.

**Table 4 | FY-2031 Allocations to Previously Approved and New CMAQ Projects**

| #                                   | UPC/<br>ID# | Jurisdiction            | Project Description                                                                                                                                                                                                                                                                                                                                                                                                                  | Proposed<br>Allocations<br>FY - 31 | Additional<br>Funding<br>Required |
|-------------------------------------|-------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|
| <b>Previously Approved Projects</b> |             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                   |
| 1                                   | 110801      | Chesapeake              | Chesapeake Signal System Upgrade with Feasibility Study - Developing enhancements to the Citywide traffic signal system in Chesapeake to maintain internal City operations as well as regional data sharing opportunities.                                                                                                                                                                                                           | * \$250,000                        |                                   |
| 2                                   | 119268      | Portsmouth              | Citywide Traffic Signal System Upgrades - Constructing of central traffic signal control system upgrades, Intelligent Transportation System (ITS) elements, and local intersection operations/equipment upgrades.                                                                                                                                                                                                                    | * \$225,000                        |                                   |
| 3                                   | 103928      | Virginia Port Authority | Green Operator Program - Supporting the Port's dray truck replacement program and also Transportation Demand Management efforts to incentivize the modal shift to move cargo from a single truck to a barge or train.                                                                                                                                                                                                                | * \$1,000,000                      |                                   |
| 4                                   | 123639      | Norfolk                 | 26th Street/Lafayette Blvd Lane Repurposing - Repurposing the existing outside lanes along the corridors to create a safe cycling option along a heavily traveled routes connecting Lafayette neighborhoods to Tidewater Drive, thereby creating shorter pedestrian crossing distances and improve safety for the residents in this area, increasing bike and pedestrian safety by eliminating left-turns shared within a thru-lane. | * \$895,854                        |                                   |
| <b>New Projects</b>                 |             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                   |
| 5                                   | NO8CM       | Norfolk                 | Traffic Management Center (TMC) Upgrade - Upgrading the existing TMC video management equipment used to remotely monitor and respond to events on Norfolk's roadway network and across the Hampton Roads Region.                                                                                                                                                                                                                     | \$44,900                           | \$597,190                         |
| 6                                   | NO2CM       | Norfolk                 | Citywide Signal Retiming Phase VI - Updating and creating new coordinated timing plans and other timing parameters for traffic signals operating across ten major travel corridors in the City of Norfolk.                                                                                                                                                                                                                           | \$1,060,300                        | \$353,320                         |
| 7                                   | HR1CM       | Hampton Roads Transit   | Bus Vehicle Replacement - Supporting the purchase of new vehicles meeting updated emissions standards for use across all six cities in the HRT service area, replacing less efficient equipment at the end of its service life.                                                                                                                                                                                                      | \$6,000,000                        | \$30,654,500                      |
| 8                                   | VB1CM       | Virginia Beach          | Citywide Traffic Signal Retiming - Updating timing operations 88 signalized intersections throughout the City of Virginia Beach along six major road corridors.                                                                                                                                                                                                                                                                      | \$616,000                          | \$616,000                         |
| 9                                   | CH1CM       | Chesapeake              | Citywide Signal Retiming -- Phases 1-5 - Employing a systematic approach to developing new signal timings for strategic corridors and isolated intersections in the over a five-year period.                                                                                                                                                                                                                                         | \$150,000                          | \$600,000                         |
| 10                                  | NO1CM       | Norfolk                 | Advanced Traffic Management System (ATMS) Phase 5 - Upgrading the existing ethernet equipment being used for the Norfolk's traffic signal communications system including the evaluation of the existing ethernet equipment, development of minimum or no-plans packages, removal of existing equipment, installation of the new equipment, and completion of network integration and troubleshooting.                               | \$163,800                          | \$5,242,800                       |

**Table 4 (Continued) | FY-2031 Allocations to Previously Approved and New CMAQ Projects**

| #                   | UPC/<br>ID# | Jurisdiction      | Project Description                                                                                                                                                                                                                                                                                                                                                                               | Proposed<br>Allocations<br>FY - 31  | Additional<br>Funding<br>Required |
|---------------------|-------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|
| <b>New Projects</b> |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                   |
| 11                  | NN1CM       | Newport News      | Citywide ITS Upgrades - upgrading various traffic signal system components throughout the 280 locations within the Newport News' traffic signal system, including signal system servers, system software, network switches, individual controllers, vehicle and bicycle/pedestrian detection systems, signal communication hardware, advanced video components, and uninterruptible power supply. | \$500,000                           | \$1,000,000                       |
| 12                  | NN2CM       | Newport News      | Citywide Signal Retiming - Implementing the optimization of traffic signals throughout the City of Newport News with the intent on reducing travel times, delays, stops and fuel use.                                                                                                                                                                                                             | \$500,000                           | \$1,000,000                       |
| 13                  | NO3CM       | Norfolk           | Citywide Signal System Upgrades - Evaluating the existing fiber communications Norfolk's traffic signal system network performance and susceptibility to network connectivity failure, identifying high risk locations and strategies for mitigating risk of network failure, and implementing measures that maximize performance and build redundancy.                                           | \$374,400                           | \$7,049,660                       |
| 14                  | HA1CM       | Hampton           | Traffic Signal Systems Retiming - Collecting vehicular data and optimizing all 186 traffic signals citywide.                                                                                                                                                                                                                                                                                      | * \$1,500,000                       |                                   |
| 15                  | NO4CM       | Norfolk           | Traffic Signal Detection Upgrades - Upgrading vehicle detection infrastructure at 36 intersections to improve detection and system performance.                                                                                                                                                                                                                                                   | \$99,000                            | \$3,331,900                       |
| 16                  | WA1CM       | WATA              | Bus Vehicle Replacement - Replacing heavy duty transit vehicles that we be at the end of useful life.                                                                                                                                                                                                                                                                                             | \$800,000                           | \$13,109,079                      |
| 17                  | NN3CM       | Newport News      | Warwick Boulevard/Main Street Intersection Improvements - upgrading traffic signals to support protected-permissive left turns along all approaches of the Warwick Boulevard / Main street intersection, together with installation of high visibility crosswalks and enhanced pedestrian safety features.                                                                                        | \$190,000                           | \$910,000                         |
| 18                  | JC2CM       | James City County | Richmond Road Sidewalk Infill Segment 1 -Installing five foot sidewalks along Richmond Road within the existing gap between Bush Springs Road and 7607 Richmond Road, a distance of approximately 1,453 feet.                                                                                                                                                                                     | \$240,509                           | \$1,115,856                       |
| 19                  | CH3CM       | Chesapeake        | Cedar Road Sidewalk -- Cedar Lakes to Bartell East - constructing a sidewalk along the south side of Cedar Road between Cedar Lakes Drive and Bartell Drive East.                                                                                                                                                                                                                                 | \$110,000                           | \$1,090,000                       |
|                     |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                   | FY-31 Mark                          | \$15,361,905                      |
|                     |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                   | Total FY-31 Allocations             | \$14,719,763                      |
|                     |             |                   |                                                                                                                                                                                                                                                                                                                                                                                                   | Total Left in Reserve/Balance Entry | \$642,142                         |

\* Project is fully funded with the proposed FY 2031 allocation.

**Map 1 | Projects Selected for FY 2031 CMAQ Allocations (See next page for legend)**



## Projects Selected for CMAQ Allocations

### Mapped Projects

- ④ 26th Street/Lafayette Boulevard Lane Repurposing - Norfolk
- ⑯ Warwick Boulevard/Main Street Intersection Improvements - Newport News
- ⑯ Richmond Road Sidewalk Infill Segment 1 - James City County
- ⑯ Cedar Road Sidewalk - Cedar Lakes to Bartell East - Chesapeake

### Unmapped Projects

- ① Citywide Traffic Signal System Upgrade - Chesapeake
- ② Citywide Traffic Signal System Upgrades - Portsmouth
- ③ Green Operator Program - Virginia Port Authority
- ⑤ Traffic Management Center (TMC) - Norfolk
- ⑥ Citywide Signal Retiming Phase VI - Norfolk
- ⑦ Bus Vehicle Replacement - HRT
- ⑧ Citywide Traffic Signal Retiming - Virginia Beach
- ⑨ Citywide Signal Retiming Phases 1-5 - Chesapeake
- ⑩ Advanced Traffic Management System (ATMS) Phase 5 - Norfolk
- ⑪ Citywide ITS Upgrades - Newport News
- ⑫ Citywide Signal Retiming - Newport News
- ⑬ Citywide Signal Systems Upgrades - Norfolk
- ⑭ Traffic Signal Systems Retiming - Hampton
- ⑮ Traffic Signal Detection Upgrades - Norfolk
- ⑯ Bus Vehicle Replacement - WATA

### Project Selection Status

- Previously Approved CMAQ Projects
- New CMAQ Projects

**This Page Intentionally Left Blank**

## **Section IV**

### ***RSTP Project Selection***

## RSTP PROJECT SELECTION

Details on the policies, procedures, and analysis methodologies used for RSTP project selection are included in the ***Guide to the HRTPO CMAQ and RSTP Project Selection Process***, which may be accessed on the HRTPO website at <https://www.hrtpo.org/DocumentCenter/View/685/Guide-to-the-HRTPO-CMAQ--RSTP-Project-Selection-Process-PDF?bidId=>.

To ensure that all of the necessary information is included with each project proposal, and to provide uniformity to the way that project information is submitted, HRTPO staff developed application forms to be utilized for the submission of RSTP project proposals. The ***RSTP Candidate Project Application Forms*** may be accessed on the HRTPO website at <https://www.hrtpo.org/264/Congestion-Mitigation-Air-Quality-Improv>.

In an effort to continually improve the quantitative nature of the HRTPO CMAQ and RSTP Project Selection Process, the Transportation Technical Advisory Committee (TTAC) recommended during the meeting of March 2, 2016 that the HRTPO Project Prioritization Tool (<https://www.hrtpo.org/260/Project-Prioritization>) be used to evaluate highway-type RSTP projects. Since the HRTPO Prioritization Tool at that time was not capable of evaluating most non-highway type projects, TTAC recommended that the HRTPO staff continue to use the previous RSTP methodologies to evaluate these projects. The HRTPO Board approved this change to the Project Selection Process on March 17, 2016. Subsequently, the HRTPO Project Prioritization Tool has been further enhanced to evaluate all types of RSTP project applications.

The total RSTP funding expected to be available for FY 2031, including the 20 percent state match, is approximately \$37.1 million. Consistent with the CMAQ project selection process, prior to considering new projects to receive RSTP allocations, the status of current projects is reviewed to determine whether additional funding is needed for the completion of a project or project phase. The review of previously approved projects also includes determining whether those projects are progressing on schedule or whether funds should be:

1. Reallocated to correspond with updated phase schedules, or
2. Reallocated to other projects.

“Penciled-in” requests are funding requests included in the original RSTP project application for years beyond the first year for which funds were requested. The HRTPO staff review of previously approved RSTP projects showed that the “penciled-in” requests for these projects exceeded the expected RSTP funding available in FY 2031. Therefore, the Hampton Roads Transportation Planning Organization (HRTPO) Board recommended at its July 18, 2024, meeting not to accept new projects for the 2024 RSTP Project Selection Process and allocate all available FY 2031 RSTP funding to previously approved projects.

The TPS met on November 22, 2024 and made funding allocation recommendations for previously approved RSTP projects in FY 2031. Subsequently, the Transportation Technical Advisory Committee (TTAC) endorsed these funding allocation recommendations before being advanced to the HRTPO Board for final approval.

## RSTP PROJECT SELECTION AND FUNDING ALLOCATIONS

During the January 16, 2025 meeting, the HRTPO Board approved the following actions regarding RSTP funding for FY 2031:

- Twelve previously approved RSTP projects were selected to receive a total of \$35 million in FY 2031 funding.
- A reserve balance of \$2,054,581 in FY 2031 funding was retained.

The approved RSTP projects are listed and summarized in Table 5 below. Map 2 on Page 30 displays the geographic location of the FY 2031 RSTP allocations where feasible.

**Table 5 | FY 2031 Allocations to Previously Approved RSTP Projects**

| #                                   | UPC #  | Jurisdiction/<br>Agency | Project Name and Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proposed<br>Allocations<br>FY - 31 | Additional<br>Funding<br>Required |
|-------------------------------------|--------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|
| <b>Previously Approved Projects</b> |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                   |
| 1                                   | T14104 | HRT                     | goCommute Program - Annual funding for the regional Transportation Demand Management (TDM) program.                                                                                                                                                                                                                                                                                                                                                                                                                       | \$1,000,000                        | \$1,000,000 (1)                   |
| 2                                   | 119275 | Virginia Beach          | Laskin Rd Phase III - Widening between Phillip Avenue to Republic Road from 4 lanes to 6 lanes, removal of service/feeder roads, addition of pedestrian signals and crossings at all signalized intersections, addition of directional median at Phillip Avenue and Laskin Road intersection, and addition of sidewalks and multi-use path.                                                                                                                                                                               | * \$9,675,125                      |                                   |
| 3                                   | 123588 | Norfolk                 | Citywide Fiber Upgrades - Evaluating the existing fiber communications network performance and susceptibility to network connectivity failure, identifying high risk locations and strategies for mitigating risk of network failure, and implementing measures that maximize performance and build redundancy into the existing communications network.                                                                                                                                                                  | \$1,707,100                        | \$2,276,030                       |
| 4                                   | 123765 | Suffolk                 | Citywide Traffic Signal System Timing - Developing and implementing signal timing plans for coordinated traffic signal systems throughout the City of Suffolk.                                                                                                                                                                                                                                                                                                                                                            | * \$95,000                         |                                   |
| 5                                   | 123636 | Chesapeake              | Military Hwy Near Bainbridge Blvd Safety Improvement - Implementing a system of strategies targeted to improve vehicle safety to reduce the number and severity of crashes at this interchange, including construction of a Restricted Crossing U-Turn (RCUT) at a median opening east of interchange, adding a new left turn lane, and installation of improved advance street name/guidance signs, railroad crossing activated flashing beacon warnings, and Intelligent Transportation System Dynamic Message Signage. | \$117,000                          | \$1,651,188                       |

**Table 5 (Continued) | FY 2031 Allocations to Previously Approved RSTP Projects**

| #                                          | UPC #  | Jurisdiction/<br>Agency | Project Name and Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proposed<br>Allocations<br>FY - 31 | Additional<br>Funding<br>Required |
|--------------------------------------------|--------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|
| <b>Previously Approved Projects</b>        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                   |
| 6                                          | 123635 | Norfolk                 | Military Highway at Poplar Hall Shared Use Path - Constructing a 12-foot wide asphalt shared use path along the west side of Military Highway from the existing sidewalk terminus of the Curlew Drive overpass over I-264 to Poplar Hall Drive, constructing a 8-foot wide concrete sidewalk along the south side of Poplar Hall drive from the new shared use path to the existing shared use path terminus in the median of Poplar Hall Drive, and other related safety enhancements in the area. | \$2,066,975                        | \$4,770,123                       |
| 7                                          | 123587 | Chesapeake              | Rt 17/460 Intersection Improvement - Addressing the safety issues at the signalized intersection of Military Highway and George Washington Highway by partially displacing the left turns from east bound and west bound Military Highway to reduce left-turning crossing distances.                                                                                                                                                                                                                | \$1,380,686                        | \$9,814,153                       |
| 8                                          | 110627 | Gloucester County       | George Washington Memorial Highway (Route 17) Widening Phase 1 - Widening from a 4-lane principal arterial to a 6-lane principle arterial and to provide safe passage for pedestrians. The phase will begin at the intersection of Farmwood Road, where a previous widening project ended, and continue to approximately 1000 feet north of the intersection with Hook Road/Guinea Road. The total length of this phase is 1.4 miles of the overall 10.4 miles for the entire project.              | * \$4,122,551                      |                                   |
| 9                                          | T19477 | HRT                     | Penninsula BRT - Identifying and comparing the benefits, costs, and impacts of potential new fixed guideway transit alternatives. The intent of the analysis is to identify potential impacts to the social, economic and natural environment for each alternative and the relative cost to mitigate these impacts. The conceptual engineering effort will define key connection points, right of way requirements, and station locations.                                                          | \$4,000,000                        | \$4,000,000                       |
| 10                                         | 115543 | Virginia Beach          | Nimmo Parkway -- Phase VIIIB - Constructing a new two lane undivided roadway with shoulders, on road bike lanes, and a single shared use path on the north side from Albuquerque Drive to Sandbridge Road, a distance of approximately 1.7 miles. This project will include a bridge spanning Hell's Point Creek and the adjacent flood plain and wetlands area.                                                                                                                                    | * \$2,759,495                      |                                   |
| 11                                         | 110627 | Gloucester County       | Rt. 17 Gloucester Point Shared Use Path - Constructing a buffered 10 foot wide shared use path along the eastside of Route 17 from Farmwood Road to Guinea Road.                                                                                                                                                                                                                                                                                                                                    | \$4,050,000                        | \$6,967,546                       |
| 12                                         | 123585 | Virginia Beach          | Laskin Road Phase I-B - Eliminating the unsafe and confusing bi-directional frontage roads on both sides of Laskin Road from Red Robin Road to Oriole Drive by widening the 4-lane plus frontage road facility to a traditional 6-lane divided facility with a raised median and accommodations for bicycles, sidewalks, and a shared-use path.                                                                                                                                                     | \$4,050,000                        | \$28,626,075                      |
| <b>FY-31 Mark</b>                          |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$37,078,513                       |                                   |
| <b>Total FY-31 Allocations</b>             |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$35,023,932                       |                                   |
| <b>Total Left in Reserve/Balance Entry</b> |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$2,054,581                        |                                   |

\* Project is fully funded with the proposed FY 2031 allocation.

(1) Annual requirement

All of the projects identified for CMAQ and RSTP funding will be reflected in all official State and regional programming documents including the Six Year Improvement Program (SYIP) and Transportation Improvement Program (TIP). Any changes in project schedules, costs, or other aspects of the selected projects will be monitored and managed according to HRTPO procedures.

**Map 2 | Projects Selected for FY 2031 RSTP Allocations (See next page for legend)**



## Projects Selected for RSTP Allocations

### Mapped Projects

- 2 Laskin Road Phase III - Virginia Beach
- 5 Military Hwy Near Bainbridge Blvd Safety Improvement - Chesapeake
- 6 Military Highway at Poplar Hall Drive Shared Use Path - Norfolk
- 7 Rt 17/460 Intersection Improvement - Chesapeake
- 8 George Washington Memorial Highway (Route 17) Widening Phase 1 - Gloucester County
- 10 Nimmo Parkway Phase VIIB - Virginia Beach
- 11 Rt 17 Gloucester Point Shared Use Path - Gloucester County
- 12 Laskin Road Phase I-B - Virginia Beach

### Unmapped Projects

- 1 goCommute Transportation Demand Management Program - HRT
- 3 Citywide Fiber Upgrades - Norfolk
- 4 Citywide Traffic Signal System Timing - Suffolk
- 9 Peninsula BRT - HRT

### Project Selection Status

- Previously Approved RSTP Projects
- New RSTP Projects

**This Page Intentionally Left Blank**

## **Section V**

### ***Appendix***

**CONGESTION MITIGATION AND AIR QUALITY  
SIGNAL RETIMING**

DATE: 7/26/2024  
 APPLICANT: Chesapeake  
 PROJECT NAME: Chesapeake Citywide Signal Retiming: Phases 1-5  
 LOCATION: Citywide  
 DESCRIPTION: Citywide optimization of signal timings through 5 phases

Key: cell with formula (method of calculation)

1 - COST: \$750,000

| 2 - EMISSIONS REDUCTION            | pm peak hr range: | <u>Low Volume</u><br><u>Intersections</u> | <u>Medium</u><br><u>Volume</u><br><u>Intersections</u> | <u>High Volume</u><br><u>Intersections</u> | <u>Total # of</u><br><u>Intersections</u> |
|------------------------------------|-------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------------------|
|                                    |                   | Less than 3,000 vph                       | 3,000 to 6,000 vph                                     | More than 6,000 vph                        |                                           |
| Number of Intersections:           |                   | 125                                       | 63                                                     | 6                                          | 194                                       |
| multiplied by pm peak hour volume: |                   | 2,000                                     | 4,500                                                  | 10,000 vph <sup>(1)</sup>                  |                                           |
| multiplied by delay savings:       |                   | 14                                        | 14                                                     | 14 sec/veh <sup>(2)</sup>                  |                                           |
| divided by conversion factor:      |                   | 3,600                                     | 3,600                                                  | 3,600 sec/hr                               |                                           |
| divided by delay K factor:         |                   | 0.17                                      | 0.17                                                   | 0.17 delay K factor <sup>(3)</sup>         |                                           |
| multiplied by weekday equivalents: |                   | 300                                       | 300                                                    | 300 days/year (say)                        |                                           |
| multiplied by useful life:         |                   | 5                                         | 5                                                      | 5 years <sup>(5)</sup>                     |                                           |
| Change in Vehicle Delay:           |                   | 8,578,431                                 | 9,727,941                                              | 2,058,824 hours                            |                                           |

Total Change in Vehicle Delay (sum of the columns above):

20,365,196 hours

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(4)</sup> | Heavy Duty (HD), % <sup>(6)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Light Duty, % (1-HD%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(4)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|-----------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 20,365,196                  | 2.042                                                  | 3.2%                              | 1,331                                                     | 97%                   | 0.038072                                               | 751                                                       | 2,081                                   |
| NOx               | 20,365,196                  | 16.204                                                 | 3.2%                              | 10,560                                                    | 97%                   | 0.079186                                               | 1,561                                                     | 12,121                                  |

3 - COST EFFECTIVENESS

| Type | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton (product) |
|------|------------------|---------------------------------|--------------------------------------|---------------------------|--------------------------------------|
| VOC  | \$750,000        | 2,081                           | \$360                                | 907                       | <b>\$326,830</b>                     |
| NOx  | \$750,000        | 12,121                          | \$62                                 | 907                       | <b>\$56,123</b>                      |

Notes:

<sup>(1)</sup> Based on range

<sup>(2)</sup> Pre-project delay 55 seconds \* 25% full delay savings = 14 seconds.

(55 seconds: average control delay for LOS D/E, HCM 2000, Table 5)

(25% savings: avg. of 6 studies in *The benefits of retiming traffic signals* [Srinivasa Sunkari, ITE journal, Apr. 2004, p. 26]; article documented 7 studies, but one study's results were outlying)

<sup>(3)</sup> Portion of daily delay represented by peak hour; assumed not to change significantly over the decades.

Assume pm peak hour is the peak hour of the day.

Source: "Cost Benefit Model for Intersection Level of Service Improvements" (HRPDC, June 1997), pg. 8.

<sup>(4)</sup> CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108) "IntlImproveData" sheet filtered:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: 5 (urban street)

<sup>(5)</sup> Based on recommendation of retiming signals every three to five years (*Traffic Signal Timing Manual*, FHWA, June 2008, section 7.1.2), assume useful life of 5 years.

<sup>(6)</sup> Trucks, Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
ISOLATED INTERSECTON IMPROVEMENT**

APPLICANT: Chesapeake (e.g. locality)  
 PROJECT NAME: **Cedar Road/ S Battlefield Boulevard Turn Lane**  
 LOCATION: Intersection of S. Battlefield Boulevard and Cedar Road  
 DATE: 7/26/2024 (application date)  
 DESCRIPTION: Provide for an exclusive southbound right turn lane from S. Battlefield Boulevard onto Cedar Road

Key: cell with formula (method of calculation)

1 - COST \$3,600,000<sup>(1)</sup>

**2 - EMISSIONS REDUCTION**

Weekday Peak Hour

|                                         |                                                                   |                        |
|-----------------------------------------|-------------------------------------------------------------------|------------------------|
| Intersection Delay Before Project       | <span style="border: 1px solid black; padding: 2px;">46.9</span>  | sec/veh <sup>(1)</sup> |
| Intersection Delay After Project        | <span style="border: 1px solid black; padding: 2px;">34.4</span>  | sec/veh <sup>(1)</sup> |
| Reduction in Intersection Delay (diff.) | <span style="border: 1px solid black; padding: 2px;">12.50</span> | sec/veh, pk hr         |

|                                                                                                                |                                                                           |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| multiplied by <span style="border: 1px solid black; padding: 2px;">3,265</span>                                | veh/pkhr <sup>(1)</sup>                                                   |
| divided by <span style="border: 1px solid black; padding: 2px;">3,600</span>                                   | sec/hr                                                                    |
| divided by <span style="border: 1px solid black; padding: 2px;">17% pk hr delay factor <sup>(2)</sup></span>   |                                                                           |
| multiplied by <span style="border: 1px solid black; padding: 2px;">300 wkday equivalents / year (say)</span>   |                                                                           |
| multiplied by <span style="border: 1px solid black; padding: 2px;">30 useful life, years <sup>(4)</sup></span> |                                                                           |
| Reduction in Intersection Delay                                                                                | <span style="border: 1px solid black; padding: 2px;">600,184</span> hours |

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(3)</sup> | Trucks, % <sup>(5)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Autos, % (1-truck%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(3)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 600,184                     | 2.042                                                  | 3.2%                     | 39                                                        | 96.8%               | 0.03807                                                | 22                                                        | 61                                      |
| NOx               | 600,184                     | 16.204                                                 | 3.2%                     | 311                                                       | 96.8%               | 0.07919                                                | 46                                                        | 357                                     |

**3 - COST EFFECTIVENESS**

| Type of Emissions | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effective-ness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effective-ness, \$/ton (product) |
|-------------------|------------------|---------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|
| VOC               | \$3,600,000      | 61                              | \$58,690                              | 907                               | <b>\$53,231,425</b>                   |
| NOx               | \$3,600,000      | 357                             | \$10,078                              | 907                               | <b>\$9,140,784</b>                    |

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay; assumed not to change significantly over the decades

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108)- assumptions:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: urban (5)

(4) standard for civil projects

(5) Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

# CONGESTION MITIGATION AND AIR QUALITY PEDESTRIAN IMPROVEMENTS

APPLICANT: Chesapeake (locality/agency)  
PROJECT NAME: **Cedar Road Sidewalk - Cedar Lakes to Bartell East**  
LOCATION: Along south side of Cedar Road between Cedar Lakes Drive and Bartell Dr East

**DESCRIPTION:** Provide new sidewalk facility with directional curb ramps and high visibility crosswalks  
**DATE:** 8/9/2024 (application date)

Key: **cell w/formula** (method of calculation is shown in parentheses)

1- PROJECT DATA <sup>(5)</sup> Cost: \$1,200,000

## 2- VMT REDUCTION ESTIMATE

|                          |                         |
|--------------------------|-------------------------|
| ID, adjacent blockgroups | Existing walk commuters |
| CT 210.05, BG 1          | 16                      |
| CT 210.10, BG 2          | 0                       |
| CT 210.10, BG 3          | 45                      |
| total                    | 61                      |

### 3- EMISSIONS CALCULATION

Emissions year <sup>(8)</sup> 2030

|      | Auto Starts                         |                                          |                                              | Auto Running                  |                                       |                                              | Total                                   |
|------|-------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------|
| Type | Auto Starts Reduction, /day (above) | Emissions Factor, g/start <sup>(6)</sup> | Emissions Reduction- Starts, g/day (product) | VMT Reduction, mi/day (above) | Emissions Factor, g/mi <sup>(6)</sup> | Emissions Reduction-Running, g/day (product) | Emissions Reduction-Running g/day (sum) |
| VOC  | 49                                  | 0.325933                                 | 15.9                                         | 244                           | 0.008267                              | 2.0                                          | 17.9                                    |
| NOx  | 49                                  | 0.255832                                 | 12.5                                         | 244                           | 0.048618                              | 11.9                                         | 24.3                                    |

#### 4- COST PER TON

Analysis years:  (1)

| Type | Emissions Reduction-Running, g/day (above) | Conversion Factor, kg/g | Workdays per year (say) | Analysis Years (above) | Conversion Factor, ton/kg | Emissions Reduction (ER), ton (product) | Cost per Ton (\$ [above] / ER [left]) |
|------|--------------------------------------------|-------------------------|-------------------------|------------------------|---------------------------|-----------------------------------------|---------------------------------------|
| VOC  | 17.9                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.148                                   | \$8,100,941                           |
| NOx  | 24.3                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.201                                   | \$5,963,290                           |

### Notes:

<sup>(1)</sup> Standard for civil projects.

<sup>(2)</sup> Table: B08301 File: CMAQ scoring tech update- post-6-17-22 TPS work area.pptx

<sup>(3)</sup> Source: TPS (see "alt commute % increase" tab in this workbook)

<sup>(4)</sup> Assume that these simplifications offset each other: a) only examining commuting (e.g. ignoring shopping), and b) using a one-to-one relationship between new alt mode trips and eliminated auto trips.

### <sup>(5)</sup> From application

<sup>(6)</sup> Source: NCLIPB project 2525 task 108 toolkit (Excel) "BikeRideData" tab.

(7) Source: S.17-22 TRB meeting (note: even all-car trips are shorter than 5 mi, even auto trips are longer than 5 mi).

<sup>(8)</sup> Source: 6-17-22 TPS meeting (note: avg. alt mode trips are shorter than 5 mi; avg. auto trips are longer than 10 mi)

<sup>(6)</sup> Approximate project implementation year. Given the difficulty of forecasting vehicle regulations and market dynamics, this is the earliest year in which the project could be implemented.

(9) "Implementation year" means the year in which a source first uses implementation-year emissions factors throughout the useful life of the source (as recommended by 2019 NCHRP CMAQ emission reduction toolkit).

**CONGESTION MITIGATION AND AIR QUALITY  
ISOLATED INTERSECTON IMPROVEMENT**

APPLICANT: Gloucester (e.g. locality)  
 PROJECT NAME: **Providence Road and Rte. 17 (Turn Lane)**  
 LOCATION: Intersection of Rte. 17 and Providence Road  
 DATE: 8/15/2024 (application date)  
 DESCRIPTION: Provide for a left turn lane on Providence Road to Route 17 North

Key: cell with formula (method of calculation)

1 - COST \$5,775,254<sup>(1)</sup>

**2 - EMISSIONS REDUCTION**

Weekday Peak Hour

Intersection Delay Before Project

22.3 sec/veh<sup>(1)</sup>

Intersection Delay After Project

18.2 sec/veh<sup>(1)</sup>

Reduction in Intersection Delay (diff.)

4.10 sec/veh, pk hr

multiplied by 2,832 veh/pkhr<sup>(1)</sup>

divided by 3,600 sec/hr

divided by 17% pk hr delay factor<sup>(2)</sup>

multiplied by 300 wkday equivalents / year (say)

multiplied by 30 useful life, years<sup>(4)</sup>

Reduction in Intersection Delay 170,753 hours

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(3)</sup> | Trucks, % <sup>(5)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Autos, % (1-truck%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(3)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 170,753                     | 2.042                                                  | 3.2%                     | 11                                                        | 96.8%               | 0.03807                                                | 6                                                         | 17                                      |
| NOx               | 170,753                     | 16.204                                                 | 3.2%                     | 89                                                        | 96.8%               | 0.07919                                                | 13                                                        | 102                                     |

**3 - COST EFFECTIVENESS**

| Type of Emissions | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effective-ness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effective-ness, \$/ton (product) |
|-------------------|------------------|---------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|
| VOC               | \$5,775,254      | 17                              | \$330,937                             | 907                               | <b>\$300,159,971</b>                  |
| NOx               | \$5,775,254      | 102                             | \$56,828                              | 907                               | <b>\$51,542,817</b>                   |

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay; assumed not to change significantly over the decades

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108)- assumptions:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: urban (5)

(4) standard for civil projects

(5) Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
PEDESTRIAN IMPROVEMENTS**

APPLICANT: Gloucester (locality/agency)

PROJECT NAME: **Greate Road Sidewalk**

LOCATION: Along east side of Greate Raod from Lafayette Heights to the end of Greate Road

DESCRIPTION: A buffered 6' wide sidewalk

DATE: 8/15/2024 (application date)

Key: cell w/formula (method of calculation is shown in parentheses)

**1- PROJECT DATA <sup>(5)</sup>**

Cost: \$5,246,185

**2- VMT REDUCTION ESTIMATE**

| ID, adjacent <sup>(9)</sup> blockgroups | Existing walk commuters <sup>(2)</sup> |
|-----------------------------------------|----------------------------------------|
| CT 1003.01, BG 1                        | 0                                      |
| CT 1003.01, BG 2                        | 50                                     |
| total                                   | 50                                     |

|                                                         |                             |
|---------------------------------------------------------|-----------------------------|
| Walk commuters "without" pedestrian improvement (above) | 50                          |
| Increase due to pedestrian improvement <sup>(3)</sup>   | <u>40%</u>                  |
| New active transportation commuters (product)           | 20                          |
| Factor for roundtrips                                   | <u>2</u>                    |
| Auto trip reduction <sup>(4)</sup> (product)            | 40 per day                  |
| Average length of auto trip replaced (one-way)          | <u>5 mi. <sup>(7)</sup></u> |
| VMT reduction (product)                                 | 200 mi./day                 |

**3- EMISSIONS CALCULATION**

Emissions year <sup>(8)</sup> 2030

| Type | Auto Starts                         |                                          | Auto Running                                |                               |                                       | Emissions Reduction-Running, g/day (sum) |
|------|-------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------|------------------------------------------|
|      | Auto Starts Reduction, /day (above) | Emissions Factor, g/start <sup>(6)</sup> | Emissions Reduction-Starts, g/day (product) | VMT Reduction, mi/day (above) | Emissions Factor, g/mi <sup>(6)</sup> |                                          |
| VOC  | 40                                  | 0.325933                                 | 13.0                                        | 200                           | 0.008267                              | 1.7                                      |
| NOx  | 40                                  | 0.255832                                 | 10.2                                        | 200                           | 0.048618                              | 9.7                                      |

**4- COST PER TON**

Analysis years: 30 <sup>(1)</sup>

| Type | Emissions Reduction-Running, g/day (above) | Conversion Factor, kg/g | Workdays per year (say) | Analysis Years (above) | Conversion Factor, ton/kg | Emissions Reduction (ER), ton (product) | Cost per Ton (\$ [above] / ER [left]) |
|------|--------------------------------------------|-------------------------|-------------------------|------------------------|---------------------------|-----------------------------------------|---------------------------------------|
|      | 14.7                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.121                                   | \$43,207,353                          |
| NOx  | 20.0                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.165                                   | \$31,805,930                          |

Notes:

<sup>(1)</sup> Standard for civil projects.

<sup>(2)</sup> Table: B08301 File: CMAQ scoring tech update- post-6-17-22 TPS work area.pptx

<sup>(3)</sup> Source: TPS (see "alt commute % increase" tab in this workbook)

<sup>(4)</sup> Assume that these simplifications offset each other: a) only examining commuting (e.g. ignoring shopping), and b) using a one-to-one relationship between new alt mode trips and eliminated auto trips.

<sup>(5)</sup> From application

<sup>(6)</sup> Source: NCHRP project 2525 task 108 toolkit (Excel) "BikePedData" tab

<sup>(7)</sup> Source: 6-17-22 TPS meeting (note: avg. alt mode trips are shorter than 5 mi; avg. auto trips are longer than 5 mi)

<sup>(8)</sup> Approximate project implementation year. Given the difficulty of forecasting vehicle regulations and mix, use implementation-year emissions factors throughout the useful life of the project (as recommended by 2019 NCHRP CMAQ emission reduction toolkit).

<sup>(9)</sup> "adjacent": ie beside (not at the end of)

CONGESTION MITIGATION AND AIR QUALITY  
SIGNAL RETIMING

DATE: 8/15/2024 (application date)  
 APPLICANT: Hampton (e.g. locality)  
 PROJECT NAME: **Traffic Signal Systems Retiming**  
 LOCATION: Citywide  
 DESCRIPTION: Optimize all traffic signals citywide and collect vehicular data.

Key: cell with formula (method of calculation)

1 - COST: **\$1,500,000**

| 2 - EMISSIONS REDUCTION            | pm peak hr range:   | Low Volume         | Medium Volume       | High Volume                        | Total # of Intersections |
|------------------------------------|---------------------|--------------------|---------------------|------------------------------------|--------------------------|
|                                    |                     | Intersections      | Intersections       | Intersections                      | Intersections            |
|                                    | Less than 3,000 vph | 3,000 to 6,000 vph | More than 6,000 vph |                                    |                          |
| Number of Intersections:           |                     | 150                | 31                  | 5                                  | 186                      |
| multiplied by pm peak hour volume: |                     | 2,000              | 4,500               | 10,000 vph <sup>(1)</sup>          |                          |
| multiplied by delay savings:       |                     | 14                 | 14                  | 14 sec/veh <sup>(2)</sup>          |                          |
| divided by conversion factor:      |                     | 3,600              | 3,600               | 3,600 sec/hr                       |                          |
| divided by delay K factor:         |                     | 0.17               | 0.17                | 0.17 delay K factor <sup>(3)</sup> |                          |
| multiplied by weekday equivalents: |                     | 300                | 300                 | 300 days/year (say)                |                          |
| multiplied by useful life:         |                     | 5                  | 5                   | 5 years <sup>(5)</sup>             |                          |
| Change in Vehicle Delay:           |                     | 10,294,118         | 4,786,765           | 1,715,686 hours                    |                          |

Total Change in Vehicle Delay (sum of the columns above): **16,796,569 hours**

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(4)</sup> | Heavy Duty (HD), % <sup>(6)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Light Duty, % (1-HD%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(4)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|-----------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 16,796,569                  | 2.042                                                  | 3.2%                              | 1,098                                                     | 97%                   | 0.038072                                               | 619                                                       | 1,717                                   |
| NOx               | 16,796,569                  | 16.204                                                 | 3.2%                              | 8,709                                                     | 97%                   | 0.079186                                               | 1,287                                                     | 9,997                                   |

3 - COST EFFECTIVENESS

| Type | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton (product) |
|------|------------------|---------------------------------|--------------------------------------|---------------------------|--------------------------------------|
| VOC  | \$1,500,000      | 1,717                           | \$874                                | 907                       | <b>\$792,539</b>                     |
| NOx  | \$1,500,000      | 9,997                           | \$150                                | 907                       | <b>\$136,093</b>                     |

Notes:

<sup>(1)</sup> Based on range

<sup>(2)</sup> Pre-project delay 55 seconds \* 25% full delay savings = 14 seconds.

(55 seconds: average control delay for LOS D/E, HCM 2000, Table 5)

(25% savings: avg. of 6 studies in *The benefits of retiming traffic signals* [Srinivasa Sunkari, ITE journal, Apr. 2004, p. 26]; article documented 7 studies, but one study's results were outlying)

<sup>(3)</sup> Portion of daily delay represented by peak hour; assumed not to change significantly over the decades.

Assume pm peak hour is the peak hour of the day.

Source: "Cost Benefit Model for Intersection Level of Service Improvements" (HRPDC, June 1997), pg. 8.

<sup>(4)</sup> CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108) "IntlImproveData" sheet filtered:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: 5 (urban street)

<sup>(5)</sup> Based on recommendation of retiming signals every three to five years (*Traffic Signal Timing Manual*, FHWA, June 2008, section 7.1.2), assume useful life of 5 years.

<sup>(6)</sup> Trucks, Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
BUS<sup>(4)</sup> REPLACEMENT**

APPLICANT: HRT (locality/agency)  
 PROJECT NAME: **Bus Vehicle Replacement**  
 DESCRIPTION: 29, 35, and 40 foot buses  
 DATE: 8/28/2024 (application date)

Key: cell with formula (method of calculation)

|                                                       | Existing Buses | Proposed Buses          |
|-------------------------------------------------------|----------------|-------------------------|
| Model Year <sup>(1)</sup>                             | Varies         | 2031-2035               |
| Fuel Type <sup>(1)</sup>                              | Diesel         | Diesel                  |
| Number of Buses (# to be purchased = # to be retired) | 103            | buses <sup>(1)</sup>    |
| Annual Vehicle-Miles per bus (old&new buses)          | 41,667         | VMT/year <sup>(1)</sup> |
| Expected Years of Service per new bus                 | 15             | years <sup>(3)</sup>    |
| 1 - COST                                              | \$36,654,500   | <sup>(1)</sup>          |

2 - EMISSIONS REDUCTION

| Type | Emissions Factor for Existing Buses, g/mi <sup>(2)</sup> | Emissions Factor for Proposed Buses, g/mi <sup>(2)</sup> | Emissions Factor Reduction, g/mi (difference) | Buses (above) | Annual VMT per bus (above) | Expected Years of Service per new bus (above) | Emissions Reduction, kg (product/ 1,000) |
|------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|---------------|----------------------------|-----------------------------------------------|------------------------------------------|
| VOC  | 6.08270                                                  | 0.65506                                                  | 5.42764                                       | 103           | 41,667                     | 15                                            | 349,407                                  |
| NOx  | 12.11861                                                 | 0.93580                                                  | 11.18281                                      | 103           | 41,667                     | 15                                            | 719,899                                  |

3 - COST EFFECTIVENESS

| Type | Cost (above) | Emissions Reduction, kg (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effectiveness, \$/ton (product) |
|------|--------------|---------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| VOC  | \$36,654,500 | 349,407                         | \$104.90                             | 907                               | <b>\$95,149</b>                      |
| NOx  | \$36,654,500 | 719,899                         | \$50.92                              | 907                               | <b>\$46,181</b>                      |

<sup>(1)</sup> From application

<sup>(2)</sup> NCHRP project 2525 task 108 toolkit (Excel, "NewTransitBusData" tab), based on these inputs:

model year (modelyearid) and fuel type (fueltypeid: gas[1], diesel[2], CNG[3], EV[9]) based on application;  
 analysis year (yearID=2030); road type (roadtypeid=5 [urban unrestricted access])

[The emissions factors on the prototype sheet (6.08, 0.655, 12.11, 0.93) came from the old (2020) calculation sheet.]

<sup>(3)</sup> Average retirement age of a 12-year bus is 15.1 years (Laver, et al. Useful Life of Transit Buses and Vans. FTA, 2007)

**CONGESTION MITIGATION AND AIR QUALITY  
MULTI-USE PATH**

APPLICANT: Isle of Wight (locality/agency)  
 PROJECT NAME: **Red Oaks Shared Use Path**  
 LOCATION: Along Route 10 between the intersections of Tuner Drive and Red Oaks Drive  
 DESCRIPTION: ten-foot wide shared use path with two-foot wide shoulders  
 DATE: 8/15/2024 (application date)  
 Key: cell w/formula (method of calculation is shown in parentheses)

1- PROJECT DATA <sup>(5)</sup> Cost: \$2,017,000

2- VMT REDUCTION ESTIMATE

| Blockgroups adjacent to <sup>(9)</sup> project | Existing bicycle commuters <sup>(2)</sup> | Existing walk commuters <sup>(2)</sup> | Total existing alternative mode commuters (sum) |
|------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------------|
| BG 1 CT 2801.05                                | 0                                         | 0                                      | 0                                               |
| BG 2 CT 2801.05                                | 0                                         | 0                                      | 0                                               |
| BG 3 CT 2801.05                                | 0                                         | 0                                      | 0                                               |
| BG 1 CT 2801.06                                | 0                                         | 26                                     | 26                                              |
| BG 2 CT 2801.06                                | 0                                         | 3                                      | 3                                               |
| BG 1 CT 2801.07                                | 0                                         | 0                                      | 0                                               |
| BG 2 CT 2801.07                                | 0                                         | 0                                      | 0                                               |
| total                                          | 0                                         | 29                                     | 29                                              |

|                                                                   |                      |
|-------------------------------------------------------------------|----------------------|
| Alternative mode commuters "without" proposed improvement (above) | 29                   |
| Increase due to proposed improvement <sup>(3)</sup>               | <b>60%</b>           |
| New alternative mode commuters (product)                          | 17                   |
| Factor for roundtrips                                             | 2                    |
| Auto trip reduction <sup>(4)</sup> (product)                      | 35 per day           |
| Average length of auto trip replaced (one-way)                    | 5 mi. <sup>(7)</sup> |
| VMT reduction (product)                                           | 174 mi./day          |

3- EMISSIONS CALCULATION

Emissions year <sup>(8)</sup> 2030

| Type | Auto Starts                         |                                          | Auto Running                                 |                               |                                       | Total                                        |                                          |
|------|-------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------|
|      | Auto Starts Reduction, /day (above) | Emissions Factor, g/start <sup>(6)</sup> | Emissions Reduction- Starts, g/day (product) | VMT Reduction, mi/day (above) | Emissions Factor, g/mi <sup>(6)</sup> | Emissions Reduction-Running, g/day (product) | Emissions Reduction-Running, g/day (sum) |
| VOC  | 35                                  | 0.325933                                 | 11                                           | 174                           | 0.008267                              | 1                                            | 13                                       |
| NOx  | 35                                  | 0.255832                                 | 9                                            | 174                           | 0.048618                              | 8                                            | 17                                       |

4- COST PER TON Analysis years: 30 <sup>(1)</sup>

| Type | Emissions Reduction-Running, g/day (above) | Conversion Factor, kg/g | Workdays per year (say) | Analysis Years (above) | Conversion Factor, ton/kg | Emissions Reduction (ER), ton (product) | Cost per Ton (\$ [above] / ER [left]) |
|------|--------------------------------------------|-------------------------|-------------------------|------------------------|---------------------------|-----------------------------------------|---------------------------------------|
| VOC  | 13                                         | 0.001                   | 250                     | 30                     | 0.001102                  | 0.106                                   | <b>\$19,094,167</b>                   |
| NOx  | 17                                         | 0.001                   | 250                     | 30                     | 0.001102                  | 0.144                                   | <b>\$14,055,657</b>                   |

Notes:

<sup>(1)</sup> Standard for civil projects.

<sup>(2)</sup> Table: B08301 File: ACSDT5Y2015.B08301\_data\_with\_overlays\_2022-07-13T153102.xlsx

<sup>(3)</sup> Source: TPS (see "alt commute % increase" tab in this workbook)

<sup>(4)</sup> Assume that these simplifications offset each other: a) only examining commuting (e.g. ignoring shopping), and b) using a one-to-one relationship between new alt mode trips and eliminated auto trips.

<sup>(5)</sup> From application

<sup>(6)</sup> Source: NCHRP project 2525 task 108 toolkit (Excel) "BikePedData" tab, for given emissions year

<sup>(7)</sup> Source: 6-17-22 TPS meeting (note: avg. alt mode trips are shorter than 5 mi; avg. auto trips are longer than 5 mi)

<sup>(8)</sup> Approximate project implementation year. Given the difficulty of forecasting vehicle regulations and mix,

use implementation-year emissions factors throughout the useful life of the project  
(as recommended by 2019 NCHRP CMAQ emission reduction toolkit).

<sup>(9)</sup> "adjacent to": ie beside (not at the end of)



# CONGESTION MITIGATION AND AIR QUALITY PEDESTRIAN IMPROVEMENTS

APPLICANT: James City (locality/agency)  
PROJECT NAME: **Richmond Road Sidewalk Infill Segment 1**  
LOCATION: Along richmond Road from Bush Springs Road to 7691 Richmond Road

DESCRIPTION: Provide a 5' sidewalk to fillll existing gap  
DATE: 8/5/2024 (application date)

Key: **cell w/formula** (method of calculation is shown in parentheses)

1- PROJECT DATA <sup>(5)</sup> Cost: \$1,356,365

## 2- VMT REDUCTION ESTIMATE

| ID, adjacent (9) blockgroups | Existing walk commuters (2) |
|------------------------------|-----------------------------|
| CT 802.04, BG 1              | 0                           |
| CT 802.04, BG 2              | 0                           |
| CT 802.04, BG 3              | 68                          |
| CT 802.04, BG 4              | 15                          |
| total                        | 83                          |

### 3- EMISSIONS CALCULATION

Emissions year <sup>(8)</sup> 2030

|      | Auto Starts                         |                                          |                                              | Auto Running                  |                                       |                                              | Total                                   |
|------|-------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------|
| Type | Auto Starts Reduction, /day (above) | Emissions Factor, g/start <sup>(6)</sup> | Emissions Reduction- Starts, g/day (product) | VMT Reduction, mi/day (above) | Emissions Factor, g/mi <sup>(6)</sup> | Emissions Reduction-Running, g/day (product) | Emissions Reduction-Running g/day (sum) |
| VOC  | 66                                  | 0.325933                                 | 21.6                                         | 332                           | 0.008267                              | 2.7                                          | 24.4                                    |
| NOx  | 66                                  | 0.255832                                 | 17.0                                         | 332                           | 0.048618                              | 16.1                                         | 33.1                                    |

#### 4- COST PER TON

Analysis years:  <sup>(1)</sup>

| Type | Emissions Reduction-Running, g/day (above) | Conversion Factor, kg/g | Workdays per year (say) | Analysis Years (above) | Conversion Factor, ton/kg | Emissions Reduction (ER), ton (product) | Cost per Ton (\$ [above] / ER [left]) |
|------|--------------------------------------------|-------------------------|-------------------------|------------------------|---------------------------|-----------------------------------------|---------------------------------------|
| VOC  | 24.4                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.202                                   | \$6,729,496                           |
| NOx  | 33.1                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.274                                   | \$4,953,737                           |

### Notes:

<sup>(1)</sup> Standard for civil projects.

<sup>(2)</sup> Table: B08301 File: CMAQ scoring tech update- post-6-17-22 TPS work area.pptx

<sup>(3)</sup> Source: TPS (see "alt commute % increase" tab in this workbook)

(4) Assume that these simplifications offset each other: a) only examining commuting (e.g. ignoring shopping), and b) using a one-to-one relationship between new alt mode trips and eliminated auto trips.

### (5) From application

<sup>6</sup> Sources: NCHRP project 2525 task 108 toolkit (Excel), "BikeRideData" tab.

⑦ Source: 6.17.22 TRB meeting (auto avg. alt mode trips are shorter than 5 mi; avg. auto trips are longer than 5 mi)

<sup>(8)</sup> Source: 6-17-22 TPS meeting (note: avg. alt mode trips are shorter than 5 mi; avg. auto trips are longer

⑤ Approximate project implementation year. Given the difficulty of forecasting vehicle regulations and mix, use implementation year as a means to track the useful life of the project.

use implementation-specific recommendations.

# CONGESTION MITIGATION AND AIR QUALITY PEDESTRIAN IMPROVEMENTS

APPLICANT: James City (locality/agency)  
PROJECT NAME: **Matoaka Elementary School Sidewalk Improvements**  
LOCATION: From Matoaka Elementary School to Centerville Road

**DESCRIPTION:** Provide a 5' sidewalk to connect Elementary School to Centerville Road  
**DATE:** 8/5/2024 (application date)

Key: **cell w/formula** (method of calculation is shown in parentheses)

1- PROJECT DATA <sup>(5)</sup> Cost: \$2,788,459

## 2- VMT REDUCTION ESTIMATE

| ID, adjacent<br>blockgroups | Existing walk<br>commuters (2) |
|-----------------------------|--------------------------------|
| CT 803.04, BG 1             | 68                             |
| CT 803.04, BG 2             | 0                              |
| CT 803.04, BG 3             | 0                              |
| total                       | 68                             |

### 3- EMISSIONS CALCULATION

Emissions year <sup>(8)</sup> 2030

|      | Auto Starts                         |                                          | Auto Running                                 |                               |                                       | Total                                        |                                          |
|------|-------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------|
| Type | Auto Starts Reduction, /day (above) | Emissions Factor, g/start <sup>(6)</sup> | Emissions Reduction- Starts, g/day (product) | VMT Reduction, mi/day (above) | Emissions Factor, g/mi <sup>(6)</sup> | Emissions Reduction-Running, g/day (product) | Emissions Reduction-Running, g/day (sum) |
| VOC  | 54                                  | 0.325933                                 | 17.7                                         | 272                           | 0.008267                              | 2.2                                          | 20.0                                     |
| NOx  | 54                                  | 0.255832                                 | 13.9                                         | 272                           | 0.048618                              | 13.2                                         | 27.1                                     |

#### 4- COST PER TON

Analysis years:  <sup>(1)</sup>

| Type | Emissions Reduction-Running, g/day (above) | Conversion Factor, kg/g | Workdays per year (say) | Analysis Years (above) | Conversion Factor, ton/kg | Emissions Reduction (ER), ton (product) | Cost per Ton (\$ [above] / ER [left]) |
|------|--------------------------------------------|-------------------------|-------------------------|------------------------|---------------------------|-----------------------------------------|---------------------------------------|
| VOC  | 20.0                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.165                                   | \$16,886,491                          |
| NOx  | 27.1                                       | 0.001                   | 250                     | 30                     | 0.001102                  | 0.224                                   | \$12,430,536                          |

### Notes:

<sup>(1)</sup> Standard for civil projects.

(2) Table: B08301 File: CMAQ scoring tech update- post-6-17-22 TPS work area.pptx

<sup>(3)</sup> Source: TPS (see "alt commute % increase" tab in this workbook)

(4) Assume that these simplifications offset each other: a) only examining commuting (e.g. ignoring shopping), and b) using a one-to-one relationship between new alt mode trips and eliminated auto trips.

## (5) From application

(6) From application NCI/PR 1412554 141264 bit (E) "B1" B1 B1 "bit"

<sup>7</sup> Source: NCHRP project 2525 task 108 toolkit (Excel) "BikePedData" tab

(7) Source: 6-17-22 TPS meeting (note: avg. alt mode trips are shorter than 5 mi; avg. auto trips are longer than 5 mi)

<sup>(8)</sup> Approximate project implementation year. Given the difficulty of forecasting vehicle regulations and market dynamics, this is a rough estimate.

(9) use implementation-year emissions factors throughout the useful life of (as recommended by 2019 NCHRP CMAQ emission reduction toolkit).

**CONGESTION MITIGATION AND AIR QUALITY  
BUS SHELTERS**

APPLICANT: James City (locality/agency)  
 PROJECT NAME: **Transit Stop Improvements**  
 LOCATION: Various locations  
 DESCRIPTION: Improvements may include ADA sidewalks, shelters, benches, and lighting  
 DATE: 8/8/2024 (application date)

Key: **cell w/ formula** (method of calculation is shown in parentheses)

**1 - PROJECT DATA:** <sup>(1)</sup>

|                                                 |                     |
|-------------------------------------------------|---------------------|
| Cost                                            | \$234,000           |
| Number of new shelters                          | 86 shelters         |
| Total boardings at subject stops <sup>(7)</sup> | 7 boardings per day |
| Service days of subject routes                  | 250 days per year   |

**2 - ANALYSIS YEARS:** <sup>(2)</sup>

20 years

**3 - REDUCED AUTO EMISSIONS:**

|                                                        |                     |
|--------------------------------------------------------|---------------------|
| Current boardings at subject stops                     | 7 above             |
| Increase in boardings due to shelters                  | 5% <sup>(6)</sup>   |
| Portion of bus trips that would have been made in auto | 53% <sup>(4)</sup>  |
| Reduction in Auto Trips                                | 0.2 trips           |
| Average auto trip length                               | 10.5 <sup>(5)</sup> |
| Reduction in Auto VMT                                  | 2 miles/day         |

**Auto Starts**

| Type | Emissions Factor, g/start <sup>(3)</sup> | kg/g  | Starts Reduction, per day (above) | Analysis days per year (above) | Analysis Years (above) | Emissions Reduction, kg (product) |
|------|------------------------------------------|-------|-----------------------------------|--------------------------------|------------------------|-----------------------------------|
| VOC  | 0.325933                                 | 0.001 | 0                                 | 250                            | 20                     | 0                                 |
| NOx  | 0.255832                                 | 0.001 | 0                                 | 250                            | 20                     | 0                                 |

**Auto Running**

| Type | Emissions Factor, g/mi <sup>(3)</sup> | kg/g  | VMT Reduction, mi/day (above) | Analysis days per year (above) | Analysis Years (above) | Emissions Reduction, kg (product) |
|------|---------------------------------------|-------|-------------------------------|--------------------------------|------------------------|-----------------------------------|
| VOC  | 0.008267                              | 0.001 | 2                             | 250                            | 20                     | 0                                 |
| NOx  | 0.048618                              | 0.001 | 2                             | 250                            | 20                     | 0                                 |

**4 - COST EFFECTIVENESS:**

| Type | Auto Starts Emissions, kg (above) | Auto Running Emissions, kg (above) | Total Change in Emissions, kg (sum) | Cost (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton (product) |
|------|-----------------------------------|------------------------------------|-------------------------------------|--------------|--------------------------------------|---------------------------|--------------------------------------|
| VOC  | 0                                 | 0                                  | 0                                   | \$234,000    | \$611,264                            | 907                       | \$554,416,758                        |
| NOx  | 0                                 | 0                                  | -1                                  | \$234,000    | \$329,224                            | 907                       | \$298,605,979                        |

<sup>(1)</sup> From application

<sup>(2)</sup> "a useful life of about 20 years seems to be typical" (<http://lgam.wikidot.com/bus-shelter>)

<sup>(3)</sup> NCHRP project 2525 task 108 toolkit (Excel), "New Bus Services" tab:

Project Year: 2030; Car Trips: 1; Trip Distance: 1. Get EFs from col. D on "NewBusServiceCalcs" tab.

<sup>(4)</sup> 53%, from GRTC 2019 on-board survey ("how would you have made this trip?") - sum of new auto trips

("driven alone", "gotten someone to drive me", and "used a taxi, Uber, or Lyft"), factored up to include a portion of "not sure"

<sup>(5)</sup> Source: "Summary of Travel Trends, 2017 National Household Travel Survey" (FHWA, July 2018), p. 20

<sup>(6)</sup> Source: WATA, HRT, Suffolk, DRPT- 2022 emails (see "boardings % increase" tab)

<sup>(7)</sup> Source: "boardings at stops in WATA 2016 shelter application.xlsx"

**CONGESTION MITIGATION AND AIR QUALITY  
SIGNAL RETIMING**

DATE: 8/15/2024 (application date)  
 APPLICANT: Newport News (e.g. locality)  
 PROJECT NAME: Citywide ITS Upgrades  
 LOCATION: Citywide ITS Upgrades  
 DESCRIPTION: Upgrade various

Key: cell with formula (method of calculation)

1 - COST: \$1,500,000

| 2 - EMISSIONS REDUCTION            | pm peak hr range:   | Low Volume                                                            | Medium Volume                                                          | High Volume                                                           | Total # of Intersections                                          |
|------------------------------------|---------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
|                                    |                     | Intersections                                                         | Intersections                                                          | Intersections                                                         | Intersections                                                     |
|                                    | Less than 3,000 vph | 3,000 to 6,000 vph                                                    | 6,000 vph                                                              |                                                                       |                                                                   |
| Number of Intersections:           |                     | <span style="border: 1px solid black; padding: 2px;">137</span>       | <span style="border: 1px solid black; padding: 2px;">79</span>         | <span style="border: 1px solid black; padding: 2px;">7</span>         | <span style="border: 1px solid black; padding: 2px;">223</span>   |
| multiplied by pm peak hour volume: |                     | 2,000                                                                 | 4,500                                                                  | 10,000 vph <sup>(1)</sup>                                             |                                                                   |
| multiplied by delay savings:       |                     | 14                                                                    | 14                                                                     | 14 sec/veh <sup>(2)</sup>                                             |                                                                   |
| divided by conversion factor:      |                     | 3,600                                                                 | 3,600                                                                  | 3,600 sec/hr                                                          |                                                                   |
| divided by delay K factor:         |                     | 0.17                                                                  | 0.17                                                                   | 0.17 delay K factor <sup>(3)</sup>                                    |                                                                   |
| multiplied by weekday equivalents: |                     | 300                                                                   | 300                                                                    | 300 days/year (say)                                                   |                                                                   |
| multiplied by useful life:         |                     | 5                                                                     | 5                                                                      | 5 years <sup>(5)</sup>                                                |                                                                   |
| Change in Vehicle Delay:           |                     | <span style="border: 1px solid black; padding: 2px;">9,401,961</span> | <span style="border: 1px solid black; padding: 2px;">12,198,529</span> | <span style="border: 1px solid black; padding: 2px;">2,401,961</span> | <span style="border: 1px solid black; padding: 2px;">hours</span> |

Total Change in Vehicle Delay (sum of the columns above): 24,002,451 hours

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(4)</sup> | Heavy Duty (HD), % <sup>(6)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/1,000) | Light Duty, % (1-HD%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(4)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|-----------------------------------|----------------------------------------------------------|-----------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| VOC               | 24,002,451                  | 2.042                                                  | 3.2%                              | 1,569                                                    | 97%                   | 0.038072                                               | 885                                                      | 2,453                                   |
| NOx               | 24,002,451                  | 16.204                                                 | 3.2%                              | 12,446                                                   | 97%                   | 0.079186                                               | 1,840                                                    | 14,286                                  |

3 - COST EFFECTIVENESS

| Type | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton (product) |
|------|------------------|---------------------------------|--------------------------------------|---------------------------|--------------------------------------|
| VOC  | \$1,500,000      | 2,453                           | \$611                                | 907                       | <b>\$554,607</b>                     |
| NOx  | \$1,500,000      | 14,286                          | \$105                                | 907                       | <b>\$95,236</b>                      |

Notes:

(1) Based on range

(2) Pre-project delay 55 seconds \* 25% full delay savings = 14 seconds.

(55 seconds: average control delay for LOS D/E, HCM 2000, Table 5)

(25% savings: avg. of 6 studies in *The benefits of retiming traffic signals* [Srinivasa Sunkari, ITE journal, Apr. 2004, p. 26]; article documented 7 studies, but one study's results were outlying)

(3) Portion of daily delay represented by peak hour; assumed not to change significantly over the decades.

Assume pm peak hour is the peak hour of the day.

Source: "Cost Benefit Model for Intersection Level of Service Improvements" (HRPDC, June 1997), pg. 8.

(4) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108) "IntlImproveData" sheet filtered:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: 5 (urban street)

(5) Based on recommendation of retiming signals every three to five years (*Traffic Signal Timing Manual*, FHWA, June 2008, section 7.1.2), assume useful life of 5 years.

(6) Trucks, Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
SIGNAL RETIMING**

DATE: 8/8/2024 (application date)  
 APPLICANT: Newport News (e.g. locality)  
 PROJECT NAME: **Citywide Signal Retiming**  
 LOCATION: Citywide  
 DESCRIPTION: optimization of traffic signals throughout the City of Newport News.

Key: cell with formula (method of calculation)

1 - COST: **\$1,500,000**

| 2 - EMISSIONS REDUCTION            | pm peak hr range: | <u>Low Volume</u><br>Intersections | <u>Medium Volume</u><br>Intersections | <u>High Volume</u><br>Intersections | <u>Total # of</u><br>Intersections |
|------------------------------------|-------------------|------------------------------------|---------------------------------------|-------------------------------------|------------------------------------|
|                                    |                   | Less than 3,000 vph                | 3,000 to 6,000 vph                    | More than 6,000 vph                 |                                    |
| Number of Intersections:           |                   | 137                                | 79                                    | 7                                   | 223                                |
| multiplied by pm peak hour volume: |                   | 2,000                              | 4,500                                 | 10,000 vph <sup>(1)</sup>           |                                    |
| multiplied by delay savings:       |                   | 14                                 | 14                                    | 14 sec/veh <sup>(2)</sup>           |                                    |
| divided by conversion factor:      |                   | 3,600                              | 3,600                                 | 3,600 sec/hr                        |                                    |
| divided by delay K factor:         |                   | 0.17                               | 0.17                                  | 0.17 delay K factor <sup>(3)</sup>  |                                    |
| multiplied by weekday equivalents: |                   | 300                                | 300                                   | 300 days/year (say)                 |                                    |
| multiplied by useful life:         |                   | 5                                  | 5                                     | 5 years <sup>(5)</sup>              |                                    |
| Change in Vehicle Delay:           |                   | 9,401,961                          | 12,198,529                            | 2,401,961 hours                     |                                    |

Total Change in Vehicle Delay (sum of the columns above):

**24,002,451 hours**

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(4)</sup> | Heavy Duty (HD), % <sup>(6)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Light Duty, % (1-HD%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(4)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|-----------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 24,002,451                  | 2.042                                                  | 3.2%                              | 1,569                                                     | 97%                   | 0.038072                                               | 885                                                       | 2,453                                   |
| NOx               | 24,002,451                  | 16.204                                                 | 3.2%                              | 12,446                                                    | 97%                   | 0.079186                                               | 1,840                                                     | 14,286                                  |

**3 - COST EFFECTIVENESS**

| Type | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton (product) |
|------|------------------|---------------------------------|--------------------------------------|---------------------------|--------------------------------------|
| VOC  | \$1,500,000      | 2,453                           | \$611                                | 907                       | <b>\$554,607</b>                     |
| NOx  | \$1,500,000      | 14,286                          | \$105                                | 907                       | <b>\$95,236</b>                      |

Notes:

<sup>(1)</sup> Based on range

<sup>(2)</sup> Pre-project delay 55 seconds \* 25% full delay savings = 14 seconds.

(55 seconds: average control delay for LOS D/E, HCM 2000, Table 5)

(25% savings: avg. of 6 studies in *The benefits of retiming traffic signals* [Srinivasa Sunkari, ITE journal, Apr. 2004, p. 26]; article documented 7 studies, but one study's results were outlying)

<sup>(3)</sup> Portion of daily delay represented by peak hour; assumed not to change significantly over the decades.

Assume pm peak hour is the peak hour of the day.

Source: "Cost Benefit Model for Intersection Level of Service Improvements" (HRPDC, June 1997), pg. 8.

<sup>(4)</sup> CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108) "IntlImproveData" sheet filtered:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: 5 (urban street)

<sup>(5)</sup> Based on recommendation of retiming signals every three to five years (*Traffic Signal Timing Manual*, FHWA, June 2008, section 7.1.2), assume useful life of 5 years.

<sup>(6)</sup> Trucks, Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
ISOLATED INTERSECTON IMPROVEMENT**

APPLICANT: Newport News (e.g. locality)  
 PROJECT NAME: **Warwick Blvd and Main St Intersection Improvements**  
 LOCATION: Intersection of Warwick Blvd and Main St  
 DATE: 8/14/2024 (application date)  
 DESCRIPTION: Left turn signal upgrades, crosswalks and enhanced pedestrian facilities

Key: cell with formula (method of calculation)

1 - COST \$1,100,000<sup>(1)</sup>

**2 - EMISSIONS REDUCTION**

Weekday Peak Hour

|                                         |                                                                   |                        |
|-----------------------------------------|-------------------------------------------------------------------|------------------------|
| Intersection Delay Before Project       | <span style="border: 1px solid black; padding: 2px;">64.7</span>  | sec/veh <sup>(1)</sup> |
| Intersection Delay After Project        | <span style="border: 1px solid black; padding: 2px;">12.5</span>  | sec/veh <sup>(1)</sup> |
| Reduction in Intersection Delay (diff.) | <span style="border: 1px solid black; padding: 2px;">52.20</span> | sec/veh, pk hr         |

|                                                                                                               |                                                                             |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| multiplied by <span style="border: 1px solid black; padding: 2px;">2,940</span>                               | veh/pkhr <sup>(1)</sup>                                                     |
| divided by <span style="border: 1px solid black; padding: 2px;">3,600</span>                                  | sec/hr                                                                      |
| divided by <span style="border: 1px solid black; padding: 2px;">17% pk hr delay factor<sup>(2)</sup></span>   |                                                                             |
| multiplied by <span style="border: 1px solid black; padding: 2px;">300 wkday equivalents / year (say)</span>  |                                                                             |
| multiplied by <span style="border: 1px solid black; padding: 2px;">30 useful life, years<sup>(4)</sup></span> |                                                                             |
| Reduction in Intersection Delay                                                                               | <span style="border: 1px solid black; padding: 2px;">2,256,882</span> hours |

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(3)</sup> | Trucks, % <sup>(5)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Autos, % (1-truck%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(3)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 2,256,882                   | 2.042                                                  | 3.2%                     | 147                                                       | 96.8%               | 0.03807                                                | 83                                                        | 231                                     |
| NOx               | 2,256,882                   | 16.204                                                 | 3.2%                     | 1,170                                                     | 96.8%               | 0.07919                                                | 173                                                       | 1,343                                   |

**3 - COST EFFECTIVENESS**

| Type of Emissions | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effective-ness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effective-ness, \$/ton (product) |
|-------------------|------------------|---------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|
| VOC               | \$1,100,000      | 231                             | \$4,769                               | 907                               | <b>\$4,325,473</b>                    |
| NOx               | \$1,100,000      | 1,343                           | \$819                                 | 907                               | <b>\$742,761</b>                      |

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay; assumed not to change significantly over the decades

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108)- assumptions:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: urban (5)

(4) standard for civil projects

(5) Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Norfolk  
 PROJECT NAME: **Advanced Traffic Management System (ATMS) Phase 5**  
 LOCATION: Citywide  
 DESCRIPTION: Enhancements to the citywide traffic signal system in the City of Norfolk  
 DATE: 8/15/2024 <sup>(1)</sup>  
 PROJECT COST: \$5,406,600

| 1 - EMISSIONS REDUCTION                               | veh /<br>pm pk hr: | Low Volume<br>Intersections | Medium<br>Volume<br>Intersections | High Volume<br>Intersections     | Total Intersections |
|-------------------------------------------------------|--------------------|-----------------------------|-----------------------------------|----------------------------------|---------------------|
|                                                       |                    | Less than<br>2,690          | 2,690 to 5,900                    | More than<br>5,900               |                     |
| Number of Intersections <sup>(1)</sup> :              |                    | 221                         | 66                                | 1                                | 288                 |
| multiplied by:                                        | 2,690              | 5,900                       | 9,500                             | veh / pm pk hr <sup>(2)</sup>    |                     |
| multiplied by:                                        | 10.7               | 10.7                        | 10.7                              | sec/veh <sup>(2)</sup>           |                     |
| divided by:                                           | 3,600              | 3,600                       | 3,600                             | sec/hr                           |                     |
| divided by:                                           | 0.17               | 0.17                        | 0.17                              | 0.17 delay factor <sup>(3)</sup> |                     |
| Change in Vehicle Delay:                              | 10,394             | 6,808                       | 166                               | hrs/day                          |                     |
| Total Change in Vehicle Delay (sum of 3 col's above): |                    |                             |                                   | 17,368                           | hrs/day             |

| Type | Emissions Factor, g/hr <sup>(4)</sup> | Change in Veh Delay, hr/day (above) | Emissions Reduction, g/day <sup>(5)</sup> | Emissions Reduction, kg/day | Conversion Factor, wkdays/yr | Emissions Reduction, kg/yr |
|------|---------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------|------------------------------|----------------------------|
| VOC  | 1.246                                 | 17,368                              | 21,641                                    | 21.6                        | 250                          | 5,410                      |
| NOx  | 1.168                                 | 17,368                              | 20,286                                    | 20.3                        | 250                          | 5,071                      |

2 - COST EFFECTIVENESS

Total Cost: \$5,406,600 (from above)  
 Useful Life, years: 10 <sup>(2)</sup>  
 Annual Cost: \$540,660

| Type | Cost, \$/yr (above) | Emissions Reduction, kg/yr (above) | Cost Effectiveness, \$/kg | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton |
|------|---------------------|------------------------------------|---------------------------|---------------------------|----------------------------|
| VOC  | \$540,660           | 5,410                              | \$99.93                   | 907                       | <b>\$90,640</b>            |
| NOx  | \$540,660           | 5,071                              | \$106.61                  | 907                       | <b>\$96,693</b>            |

Notes:

<sup>(1)</sup> From application

<sup>(2)</sup> As previously assumed

<sup>(3)</sup> Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

<sup>(4)</sup> Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2010b), 2021, idle.

<sup>(5)</sup> Emission Factor \* Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY  
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Norfolk  
 PROJECT NAME: **Citywide Signal Retiming Phase VI**  
 LOCATION: Citywide  
 DESCRIPTION: Upgrade of signal timing plans  
 DATE: 8/15/2024 <sup>(1)</sup>  
 PROJECT COST: \$1,413,620

| 1 - EMISSIONS REDUCTION                               | veh /<br>pm pk hr: | Low Volume<br>Intersections | Medium<br>Volume<br>Intersections | High Volume<br>Intersections     | Total Intersections |
|-------------------------------------------------------|--------------------|-----------------------------|-----------------------------------|----------------------------------|---------------------|
|                                                       |                    | Less than<br>2,690          | 2,690 to 5,900                    | More than<br>5,900               |                     |
| Number of Intersections <sup>(1)</sup> :              |                    | 101                         | 27                                | 0                                | 128                 |
| multiplied by:                                        | 2,690              | 5,900                       | 9,500                             | veh / pm pk hr <sup>(2)</sup>    |                     |
| multiplied by:                                        | 10.7               | 10.7                        | 10.7                              | sec/veh <sup>(2)</sup>           |                     |
| divided by:                                           | 3,600              | 3,600                       | 3,600                             | sec/hr                           |                     |
| divided by:                                           | 0.17               | 0.17                        | 0.17                              | 0.17 delay factor <sup>(3)</sup> |                     |
| Change in Vehicle Delay:                              | 4,750              | 2,785                       | 0                                 | hrs/day                          |                     |
| Total Change in Vehicle Delay (sum of 3 col's above): |                    |                             |                                   | 7,535                            | hrs/day             |

| Type | Emissions Factor, g/hr <sup>(4)</sup> | Change in Veh Delay, hr/day (above) | Emissions Reduction, g/day <sup>(5)</sup> | Emissions Reduction, kg/day | Conversion Factor, wkdays/yr | Emissions Reduction, kg/yr |
|------|---------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------|------------------------------|----------------------------|
| VOC  | 1.246                                 | 7,535                               | 9,389                                     | 9.4                         | 250                          | 2,347                      |
| NOx  | 1.168                                 | 7,535                               | 8,801                                     | 8.8                         | 250                          | 2,200                      |

2 - COST EFFECTIVENESS

Total Cost: \$1,413,620 (from above)  
 Useful Life, years: 10 <sup>(2)</sup>  
 Annual Cost: \$141,362

| Type | Cost, \$/yr (above) | Emissions Reduction, kg/yr (above) | Cost Effectiveness, \$/kg | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton |
|------|---------------------|------------------------------------|---------------------------|---------------------------|----------------------------|
| VOC  | \$141,362           | 2,347                              | \$60.22                   | 907                       | <b>\$54,624</b>            |
| NOx  | \$141,362           | 2,200                              | \$64.25                   | 907                       | <b>\$58,272</b>            |

Notes:

<sup>(1)</sup> From application

<sup>(2)</sup> As previously assumed

<sup>(3)</sup> Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

<sup>(4)</sup> Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2010b), 2021, idle.

<sup>(5)</sup> Emission Factor \* Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY  
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Norfolk  
 PROJECT NAME: **Citywide Signal System Upgrades**  
 LOCATION: Citywide  
 DESCRIPTION: Improved fiber communications  
 DATE: 8/15/2024 <sup>(1)</sup>  
 PROJECT COST: \$7,424,060

| 1 - EMISSIONS REDUCTION                               | veh /<br>pm pk hr: | Low Volume<br>Intersections | Medium<br>Volume<br>Intersections | High Volume<br>Intersections     | Total Intersections |
|-------------------------------------------------------|--------------------|-----------------------------|-----------------------------------|----------------------------------|---------------------|
|                                                       |                    | Less than<br>2,690          | 2,690 to 5,900                    | More than<br>5,900               |                     |
| Number of Intersections <sup>(1):</sup>               |                    | 80                          | 35                                | 0                                | 115                 |
| multiplied by:                                        | 2,690              | 5,900                       | 9,500                             | veh / pm pk hr <sup>(2)</sup>    |                     |
| multiplied by:                                        | 10.7               | 10.7                        | 10.7                              | sec/veh <sup>(2)</sup>           |                     |
| divided by:                                           | 3,600              | 3,600                       | 3,600                             | sec/hr                           |                     |
| divided by:                                           | 0.17               | 0.17                        | 0.17                              | 0.17 delay factor <sup>(3)</sup> |                     |
| Change in Vehicle Delay:                              | 3,762              | 3,610                       | 0                                 | hrs/day                          |                     |
| Total Change in Vehicle Delay (sum of 3 col's above): |                    |                             |                                   | 7,373                            | hrs/day             |

| Type | Emissions Factor, g/hr <sup>(4)</sup> | Change in Veh Delay, hr/day (above) | Emissions Reduction, g/day <sup>(5)</sup> | Emissions Reduction, kg/day | Conversion Factor, wkdays/yr | Emissions Reduction, kg/yr |
|------|---------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------|------------------------------|----------------------------|
| VOC  | 1.246                                 | 7,373                               | 9,187                                     | 9.2                         | 250                          | 2,297                      |
| NOx  | 1.168                                 | 7,373                               | 8,611                                     | 8.6                         | 250                          | 2,153                      |

2 - COST EFFECTIVENESS

Total Cost: \$7,424,060 (from above)  
 Useful Life, years: 10 <sup>(2)</sup>  
 Annual Cost: \$742,406

| Type | Cost, \$/yr (above) | Emissions Reduction, kg/yr (above) | Cost Effectiveness, \$/kg | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton |
|------|---------------------|------------------------------------|---------------------------|---------------------------|----------------------------|
| VOC  | \$742,406           | 2,297                              | \$323.26                  | 907                       | <b>\$293,194</b>           |
| NOx  | \$742,406           | 2,153                              | \$344.84                  | 907                       | <b>\$312,774</b>           |

Notes:

<sup>(1)</sup> From application

<sup>(2)</sup> As previously assumed

<sup>(3)</sup> Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

<sup>(4)</sup> Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2010b), 2021, idle.

<sup>(5)</sup> Emission Factor \* Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY  
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Norfolk  
 PROJECT NAME: **Traffic Signal Detection Upgrades**  
 LOCATION: Citywide  
 DESCRIPTION: Upgrade detection infrastructure at multiple locations  
 DATE: 8/15/2024 <sup>(1)</sup>  
 PROJECT COST: \$3,430,900

| 1 - EMISSIONS REDUCTION                               | veh /<br>pm pk hr: | Low Volume<br>Intersections | Medium<br>Volume<br>Intersections | High Volume<br>Intersections     | Total Intersections |
|-------------------------------------------------------|--------------------|-----------------------------|-----------------------------------|----------------------------------|---------------------|
|                                                       |                    | Less than<br>2,690          | 2,690 to 5,900                    | More than<br>5,900               |                     |
| Number of Intersections <sup>(1)</sup> :              |                    | 22                          | 7                                 | 0                                | 29                  |
| multiplied by:                                        | 2,690              | 5,900                       | 9,500                             | veh / pm pk hr <sup>(2)</sup>    |                     |
| multiplied by:                                        | 10.7               | 10.7                        | 10.7                              | sec/veh <sup>(2)</sup>           |                     |
| divided by:                                           | 3,600              | 3,600                       | 3,600                             | sec/hr                           |                     |
| divided by:                                           | 0.17               | 0.17                        | 0.17                              | 0.17 delay factor <sup>(3)</sup> |                     |
| Change in Vehicle Delay:                              |                    | 1,035                       | 722                               | 0 hrs/day                        |                     |
| Total Change in Vehicle Delay (sum of 3 col's above): |                    |                             |                                   | 1,757 hrs/day                    |                     |

| Type | Emissions Factor, g/hr <sup>(4)</sup> | Change in Veh Delay, hr/day (above) | Emissions Reduction, g/day <sup>(5)</sup> | Emissions Reduction, kg/day | Conversion Factor, wkdays/yr | Emissions Reduction, kg/yr |
|------|---------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------|------------------------------|----------------------------|
| VOC  | 1.246                                 | 1,757                               | 2,189                                     | 2.2                         | 250                          | 547                        |
| NOx  | 1.168                                 | 1,757                               | 2,052                                     | 2.1                         | 250                          | 513                        |

2 - COST EFFECTIVENESS

Total Cost: \$3,430,900 (from above)  
 Useful Life, years: 10 <sup>(2)</sup>  
 Annual Cost: \$343,090

| Type | Cost, \$/yr (above) | Emissions Reduction, kg/yr (above) | Cost Effectiveness, \$/kg | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton |
|------|---------------------|------------------------------------|---------------------------|---------------------------|----------------------------|
| VOC  | \$343,090           | 547                                | \$626.96                  | 907                       | <b>\$568,650</b>           |
| NOx  | \$343,090           | 513                                | \$668.83                  | 907                       | <b>\$606,625</b>           |

Notes:

<sup>(1)</sup> From application

<sup>(2)</sup> As previously assumed

<sup>(3)</sup> Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

<sup>(4)</sup> Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2010b), 2021, idle.

<sup>(5)</sup> Emission Factor \* Change in Vehicle Delay

**NORFOLK - ERT EXTENSION STUDY**

**NO SCORE OR EMISSIONS REDUCTION**

**STUDY PROJECT REQUEST**

**CONGESTION MITIGATION AND AIR QUALITY  
ISOLATED INTERSECTON IMPROVEMENT**

APPLICANT: Norfolk (e.g. locality)  
 PROJECT NAME: **E Little Creek Rd/Shore Dr Intersection Improvement**  
 LOCATION: Intersection E Little Creek Rd and Shore Dr  
 DATE: 8/15/2024 (application date)  
 DESCRIPTION: New NB left turn lane, ped crosswalks, traffic signals, ADA ramps and sidewalks

Key: cell with formula (method of calculation)

1 - COST \$3,320,450<sup>(1)</sup>

**2 - EMISSIONS REDUCTION**

Weekday Peak Hour

Intersection Delay Before Project

51.2 sec/veh<sup>(1)</sup>

Intersection Delay After Project

47.2 sec/veh<sup>(1)</sup>

Reduction in Intersection Delay (diff.)

4.00 sec/veh, pk hr

multiplied by 3,781 veh/pkhr<sup>(1)</sup>

divided by 3,600 sec/hr

divided by 17% pk hr delay factor<sup>(2)</sup>

multiplied by 300 wkday equivalents / year (say)

multiplied by 30 useful life, years<sup>(4)</sup>

Reduction in Intersection Delay 222,412 hours

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(3)</sup> | Trucks, % <sup>(5)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/1,000) | Autos, % (1-truck%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(3)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|--------------------------|----------------------------------------------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| VOC               | 222,412                     | 2.042                                                  | 3.2%                     | 15                                                       | 96.8%               | 0.03807                                                | 8                                                        | 23                                      |
| NOx               | 222,412                     | 16.204                                                 | 3.2%                     | 115                                                      | 96.8%               | 0.07919                                                | 17                                                       | 132                                     |

**3 - COST EFFECTIVENESS**

| Type of Emissions | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effective-ness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effective-ness, \$/ton (product) |
|-------------------|------------------|---------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|
| VOC               | \$3,320,450      | 23                              | \$146,077                             | 907                               | <b>\$132,491,820</b>                  |
| NOx               | \$3,320,450      | 132                             | \$25,084                              | 907                               | <b>\$22,751,207</b>                   |

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay; assumed not to change significantly over the decades

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108)- assumptions:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: urban (5)

(4) standard for civil projects

(5) Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
ISOLATED INTERSECTON IMPROVEMENT**

APPLICANT: Norfolk (e.g. locality)  
 PROJECT NAME: **Norview Av/Azalea Garden Rd Intersection Improvement**  
 LOCATION: Intersection of Norview Av and Azalea Garden Rd  
 DATE: 8/15/2024 (application date)  
 DESCRIPTION: New NB left turn lane, ped crosswalks, traffic signals, ADA ramps and sidewalks

Key: cell with formula (method of calculation)

1 - COST \$3,018,450<sup>(1)</sup>

**2 - EMISSIONS REDUCTION**

Weekday Peak Hour

|                                         |                                                                  |                        |
|-----------------------------------------|------------------------------------------------------------------|------------------------|
| Intersection Delay Before Project       | <span style="border: 1px solid black; padding: 2px;">31.3</span> | sec/veh <sup>(1)</sup> |
| Intersection Delay After Project        | <span style="border: 1px solid black; padding: 2px;">24.9</span> | sec/veh <sup>(1)</sup> |
| Reduction in Intersection Delay (diff.) | <span style="border: 1px solid black; padding: 2px;">6.40</span> | sec/veh, pk hr         |

|                                                                                 |                                                                           |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| multiplied by <span style="border: 1px solid black; padding: 2px;">2,170</span> | veh/pkhr <sup>(1)</sup>                                                   |
| divided by <span style="border: 1px solid black; padding: 2px;">3,600</span>    | sec/hr                                                                    |
| divided by <span style="border: 1px solid black; padding: 2px;">17%</span>      | pk hr delay factor <sup>(2)</sup>                                         |
| multiplied by <span style="border: 1px solid black; padding: 2px;">300</span>   | wkday equivalents / year (say)                                            |
| multiplied by <span style="border: 1px solid black; padding: 2px;">30</span>    | useful life, years <sup>(4)</sup>                                         |
| Reduction in Intersection Delay                                                 | <span style="border: 1px solid black; padding: 2px;">204,235</span> hours |

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(3)</sup> | Trucks, % <sup>(5)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/1,000) | Autos, % (1-truck%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(3)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|--------------------------|----------------------------------------------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| VOC               | 204,235                     | 2.042                                                  | 3.2%                     | 13                                                       | 96.8%               | 0.03807                                                | 8                                                        | 21                                      |
| NOx               | 204,235                     | 16.204                                                 | 3.2%                     | 106                                                      | 96.8%               | 0.07919                                                | 16                                                       | 122                                     |

**3 - COST EFFECTIVENESS**

| Type of Emissions | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effective-ness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effective-ness, \$/ton (product) |
|-------------------|------------------|---------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|
| VOC               | \$3,018,450      | 21                              | \$144,609                             | 907                               | <b>\$131,160,502</b>                  |
| NOx               | \$3,018,450      | 122                             | \$24,832                              | 907                               | <b>\$22,522,596</b>                   |

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay; assumed not to change significantly over the decades

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108)- assumptions:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: urban (5)

(4) standard for civil projects

(5) Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Norfolk  
 PROJECT NAME: **Traffic Management Center Upgrades**  
 LOCATION: Citywide  
 DESCRIPTION: Improved fiber communications  
 DATE: 8/15/2024 <sup>(1)</sup>  
 PROJECT COST: \$642,090

| 1 - EMISSIONS REDUCTION                               | veh /<br>pm pk hr: | Low Volume<br>Intersections | Medium<br>Volume<br>Intersections | High Volume<br>Intersections | Total Intersections              |
|-------------------------------------------------------|--------------------|-----------------------------|-----------------------------------|------------------------------|----------------------------------|
|                                                       |                    | Less than<br>2,690          | 2,690 to 5,900                    | More than<br>5,900           |                                  |
| Number of Intersections <sup>(1):</sup>               |                    | 221                         | 66                                | 1                            | 288                              |
|                                                       | multiplied by:     | 2,690                       | 5,900                             | 9,500                        | veh / pm pk hr <sup>(2)</sup>    |
|                                                       | multiplied by:     | 10.7                        | 10.7                              | 10.7                         | sec/veh <sup>(2)</sup>           |
|                                                       | divided by:        | 3,600                       | 3,600                             | 3,600                        | sec/hr                           |
|                                                       | divided by:        | 0.17                        | 0.17                              | 0.17                         | 0.17 delay factor <sup>(3)</sup> |
| Change in Vehicle Delay:                              |                    | 10,394                      | 6,808                             | 166                          | hrs/day                          |
| Total Change in Vehicle Delay (sum of 3 col's above): |                    |                             |                                   | 17,368                       | hrs/day                          |

| Type | Emissions Factor, g/hr <sup>(4)</sup> | Change in Veh Delay, hr/day (above) | Emissions Reduction, g/day <sup>(5)</sup> | Emissions Reduction, kg/day | Conversion Factor, wkdays/yr | Emissions Reduction, kg/yr |
|------|---------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------|------------------------------|----------------------------|
| VOC  | 1.246                                 | 17,368                              | 21,641                                    | 21.6                        | 250                          | 5,410                      |
| NOx  | 1.168                                 | 17,368                              | 20,286                                    | 20.3                        | 250                          | 5,071                      |

2 - COST EFFECTIVENESS

Total Cost: \$642,090 (from above)  
 Useful Life, years: 10 <sup>(2)</sup>  
 Annual Cost: \$64,209

| Type | Cost, \$/yr (above) | Emissions Reduction, kg/yr (above) | Cost Effectiveness, \$/kg | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton |
|------|---------------------|------------------------------------|---------------------------|---------------------------|----------------------------|
| VOC  | \$64,209            | 5,410                              | \$11.87                   | 907                       | <b>\$10,764</b>            |
| NOx  | \$64,209            | 5,071                              | \$12.66                   | 907                       | <b>\$11,483</b>            |

Notes:

<sup>(1)</sup> From application

<sup>(2)</sup> As previously assumed

<sup>(3)</sup> Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

<sup>(4)</sup> Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2010b), 2021, idle.

<sup>(5)</sup> Emission Factor \* Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY  
ISOLATED INTERSECTON IMPROVEMENT**

APPLICANT: Suffolk (e.g. locality)  
 PROJECT NAME: **S. Quay Road at O'Kelly Drive turn lane**  
 LOCATION: Intersection of S. Quay Road and O'Kelly Drive  
 DATE: 8/15/2024 (application date)  
 DESCRIPTION: Provide for a right turn lane from eastbound S. Quay Road onto southbound O'Kelly Drive

Key: cell with formula (method of calculation)

1 - COST \$2,815,000<sup>(1)</sup>

**2 - EMISSIONS REDUCTION**

| <u>Weekday Peak Hour</u>                |                                       |
|-----------------------------------------|---------------------------------------|
| Intersection Delay Before Project       | 6.9 sec/veh <sup>(1)</sup>            |
| Intersection Delay After Project        | 6.6 sec/veh <sup>(1)</sup>            |
| Reduction in Intersection Delay (diff.) | 0.30 sec/veh, pk hr                   |
|                                         |                                       |
| multiplied by                           | 6,024 veh/pkhr <sup>(1)</sup>         |
| divided by                              | 3,600 sec/hr                          |
| divided by                              | 17% pk hr delay factor <sup>(2)</sup> |
| multiplied by                           | 300 wkday equivalents / year (say)    |
| multiplied by                           | 30 useful life, years <sup>(4)</sup>  |
| Reduction in Intersection Delay         | 26,576 hours                          |

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(3)</sup> | Trucks, % <sup>(5)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Autos, % (1-truck%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(3)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 26,576                      | 2.042                                                  | 3.2%                     | 2                                                         | 96.8%               | 0.03807                                                | 1                                                         | 3                                       |
| NOx               | 26,576                      | 16.204                                                 | 3.2%                     | 14                                                        | 96.8%               | 0.07919                                                | 2                                                         | 16                                      |

**3 - COST EFFECTIVENESS**

| Type of Emissions | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effectiveness, \$/ton (product) |
|-------------------|------------------|---------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| VOC               | \$2,815,000      | 3                               | \$1,036,391                          | 907                               | <b>\$940,006,749</b>                 |
| NOx               | \$2,815,000      | 16                              | \$177,967                            | 907                               | <b>\$161,415,913</b>                 |

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay; assumed not to change significantly over the decades

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108)- assumptions:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: urban (5)

(4) standard for civil projects

(5) Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**SUFFOLK - PLUMMER BLVD EXTENSION**

**PROJECT NOT SCORED**

**INELIGIBLE ACTIVITY - ADDITIONAL CAPACITY FOR SOV TRAVEL**

**CONGESTION MITIGATION AND AIR QUALITY  
CITYWIDE SIGNAL SYSTEM**

JURISDICTION: Virginia Beach  
 PROJECT NAME: **Citywide Traffic Signal Retiming**  
 LOCATION: Citywide  
 DESCRIPTION: Upgrade of signal timing plans for 88 intersections  
 DATE: 8/15/2024 <sup>(1)</sup>  
 PROJECT COST: \$1,232,000

| 1 - EMISSIONS REDUCTION                               | veh /<br>pm pk hr: | Low Volume<br>Intersections | Medium<br>Volume<br>Intersections | High Volume<br>Intersections     | Total Intersections |
|-------------------------------------------------------|--------------------|-----------------------------|-----------------------------------|----------------------------------|---------------------|
|                                                       |                    | Less than<br>2,690          | 2,690 to 5,900                    | More than<br>5,900               |                     |
| Number of Intersections <sup>(1)</sup> :              |                    | 57                          | 29                                | 2                                | 88                  |
| multiplied by:                                        | 2,690              | 5,900                       | 9,500                             | veh / pm pk hr <sup>(2)</sup>    |                     |
| multiplied by:                                        | 10.7               | 10.7                        | 10.7                              | sec/veh <sup>(2)</sup>           |                     |
| divided by:                                           | 3,600              | 3,600                       | 3,600                             | sec/hr                           |                     |
| divided by:                                           | 0.17               | 0.17                        | 0.17                              | 0.17 delay factor <sup>(3)</sup> |                     |
| Change in Vehicle Delay:                              | 2,681              | 2,991                       | 332                               | hrs/day                          |                     |
| Total Change in Vehicle Delay (sum of 3 col's above): |                    |                             |                                   | 6,004                            | hrs/day             |

| Type | Emissions Factor, g/hr <sup>(4)</sup> | Change in Veh Delay, hr/day (above) | Emissions Reduction, g/day <sup>(5)</sup> | Emissions Reduction, kg/day | Conversion Factor, wkdays/yr | Emissions Reduction, kg/yr |
|------|---------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------|------------------------------|----------------------------|
| VOC  | 1.246                                 | 6,004                               | 7,481                                     | 7.5                         | 250                          | 1,870                      |
| NOx  | 1.168                                 | 6,004                               | 7,013                                     | 7.0                         | 250                          | 1,753                      |

2 - COST EFFECTIVENESS

Total Cost: \$1,232,000 (from above)  
 Useful Life, years: 10 <sup>(2)</sup>  
 Annual Cost: \$123,200

| Type | Cost, \$/yr (above) | Emissions Reduction, kg/yr (above) | Cost Effectiveness, \$/kg | Conversion Factor, kg/ton | Cost Effectiveness, \$/ton |
|------|---------------------|------------------------------------|---------------------------|---------------------------|----------------------------|
| VOC  | \$123,200           | 1,870                              | \$65.87                   | 907                       | <b>\$59,743</b>            |
| NOx  | \$123,200           | 1,753                              | \$70.27                   | 907                       | <b>\$63,733</b>            |

Notes:

<sup>(1)</sup> From application

<sup>(2)</sup> As previously assumed

<sup>(3)</sup> Portion of daily delay represented by peak hour

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, June 1997.

<sup>(4)</sup> Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2010b), 2021, idle.

<sup>(5)</sup> Emission Factor \* Change in Vehicle Delay

**CONGESTION MITIGATION AND AIR QUALITY  
ISOLATED INTERSECTON IMPROVEMENT**

APPLICANT: Virginia Beach (e.g. locality)  
 PROJECT NAME: **Pacific Avenue at 17th and 22nd Streets Turn Lane Improvements**  
 LOCATION: Intersection of Pacific Ave and 17th and 22nd Streets  
 DATE: 8/15/2024 (application date)  
 DESCRIPTION: New left turn lanes along Pacific Av at 17th and 22nd Street

Key: cell with formula (method of calculation)

1 - COST \$29,864,643<sup>(1)</sup>

**2 - EMISSIONS REDUCTION**

Weekday Peak Hour

Intersection Delay Before Project

22.4 sec/veh<sup>(1)</sup>

Intersection Delay After Project

15.7 sec/veh<sup>(1)</sup>

Reduction in Intersection Delay (diff.)

6.70 sec/veh, pk hr

multiplied by 1,745 veh/pkhr<sup>(1)</sup>

divided by 3,600 sec/hr

divided by 17% pk hr delay factor<sup>(2)</sup>

multiplied by 300 wkday equivalents / year (say)

multiplied by 30 useful life, years<sup>(4)</sup>

171,934 hours

| Type of Emissions | Delay Reduction, hr (above) | Emissions Factor, Heavy Duty Vehs, g/hr <sup>(3)</sup> | Trucks, % <sup>(5)</sup> | Emissions Reduction, Heavy Duty Vehs, kg (product/ 1,000) | Autos, % (1-truck%) | Emissions Factor, Light Duty Vehs, g/hr <sup>(3)</sup> | Emissions Reduction, Light Duty Vehs, kg (product/ 1,000) | Emissions Reduction, All Vehs, kg (sum) |
|-------------------|-----------------------------|--------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| VOC               | 171,934                     | 2.042                                                  | 3.2%                     | 11                                                        | 96.8%               | 0.03807                                                | 6                                                         | 18                                      |
| NOx               | 171,934                     | 16.204                                                 | 3.2%                     | 89                                                        | 96.8%               | 0.07919                                                | 13                                                        | 102                                     |

**3 - COST EFFECTIVENESS**

| Type of Emissions | Cost, \$ (above) | Emissions Reduction, kg (above) | Cost Effective-ness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effective-ness, \$/ton (product) |
|-------------------|------------------|---------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|
| VOC               | \$29,864,643     | 18                              | \$1,699,568                           | 907                               | <b>\$1,541,508,359</b>                |
| NOx               | \$29,864,643     | 102                             | \$291,846                             | 907                               | <b>\$264,704,461</b>                  |

Notes:

(1) From application

(2) pk hr delay factor = pk hr delay / daily delay; assumed not to change significantly over the decades

Source: "Cost Benefit Model for Intersection Level of Service Improvements", HRPDC, Page 8, June 1997.

(3) CMAQ Emission Reduction Toolkit (NCHRP, 25-25, Task 108)- assumptions:

year 2030 (estimated project year factor used throughout useful life)

speed 0 mph (idling)

road type: urban (5)

(4) standard for civil projects

(5) Non-freeways in Hampton Roads, CMP 2017-2019 network (3.2%)

**CONGESTION MITIGATION AND AIR QUALITY  
OTHER**

JURISDICTION: The Port of Virginia  
 PROJECT NAME: **Green Operator Program**  
 LOCATION: HRTPO Planning Area  
 DESCRIPTION: Air quality and congestion management program (clean diesel technologies for dray truck replacements, tug repowering, cargo handling equipment, and monitored Transportation Demand Management Program to induce the shift of containers from single truck trips to barge or rail.)  
 DATE: 8/15/2024 <sup>(1)</sup>  
 PROJECT COST: \$12,000,000

**1 - EMISSIONS REDUCTION**

|                                     |        |       |        |                                             |
|-------------------------------------|--------|-------|--------|---------------------------------------------|
| Vehicle Volume (ADT)                | 24,500 | /1440 | 17.01  | vehicles per minute                         |
| Train Crossings per day             | 5      |       | 340.28 | vehicles delayed per train <sup>(3)</sup>   |
| Average Obstruction per train (min) | 20     |       | 10     | average vehicle delay (mins) <sup>(6)</sup> |

| Arterial                                    | Number of Vehicles Delayed <sup>(4)</sup> | Avg Delay Before (s/veh) | Avg Delay After (s/veh) | Delay Savings (s/veh) | Delay Savings (s/day) | Delay Savings (hr/day) |
|---------------------------------------------|-------------------------------------------|--------------------------|-------------------------|-----------------------|-----------------------|------------------------|
| <b>Freeman Avenue</b>                       |                                           |                          |                         |                       |                       |                        |
| North Main Street at CSX Main Line Crossing | 1701                                      | 600                      | 0                       | 600                   | 1,020,833             | 284                    |
| Total Delay Savings                         |                                           |                          |                         |                       |                       | 284 hr/day             |

| Type | Emissions Factor, g/hr <sup>(2)</sup> | Change in Veh Delay, hr/day (above) | Emissions Reduction, g/day | Emissions Reduction, kg/day | Conversion Factor, wkdays/yr <sup>(3)</sup> | Emissions Reduction, kg/yr |
|------|---------------------------------------|-------------------------------------|----------------------------|-----------------------------|---------------------------------------------|----------------------------|
| VOC  | 1.246                                 | 284                                 | 353                        | 0.4                         | 250                                         | 88                         |
| NOx  | 1.168                                 | 284                                 | 331                        | 0.3                         | 250                                         | 83                         |

**2 - COST EFFECTIVENESS**

Total Cost: \$12,000,000  
 Useful Life, years: 15 <sup>(5)</sup>  
 Annual Cost: \$800,000

| Type | Cost, \$/yr (above) | Emissions Reduction, kg/yr (above) | Cost Effectiveness, \$/kg | Cost Effectiveness, \$/ton |
|------|---------------------|------------------------------------|---------------------------|----------------------------|
| VOC  | \$800,000           | 88                                 | \$9,057                   | <b>\$8,214,609</b>         |
| NOx  | \$800,000           | 83                                 | \$9,662                   | <b>\$8,763,187</b>         |

<sup>(1)</sup> From application

<sup>(2)</sup> Source: VDOT, Fleet Avg. Emission Factors for Hampton Roads (Based on US EPA Model MOVES2012/2014a) 2023, idle

<sup>(3)</sup> Average Obstruction per train (minutes) \* Vehicles per minute

<sup>(4)</sup> Vehicles delayed per train \* number of train crossings per day

<sup>(5)</sup> Assumed useful life in years for railroad crossing early warning system

<sup>(6)</sup> Avg. of 20 minute maximum delay and 0 minute minimum delay; (AVG 20,0)

**CONGESTION MITIGATION AND AIR QUALITY  
BUS<sup>(4)</sup> REPLACEMENT**

APPLICANT: WATA (locality/agency)  
 PROJECT NAME: **Bus Vehicle Replacement**  
 DESCRIPTION: Purchase of Replacement and New Vehicles  
 DATE: 8/28/2024 (application date)

Key: cell with formula (method of calculation)

|                                                       | Existing Buses              | Proposed Buses                 |
|-------------------------------------------------------|-----------------------------|--------------------------------|
| Model Year <sup>(1)</sup>                             | 2015                        | 2033                           |
| Fuel Type <sup>(1)</sup>                              | Diesel                      | Mixed                          |
| Number of Buses (# to be purchased = # to be retired) |                             | 4 buses <sup>(1)</sup>         |
| Annual Vehicle-Miles per bus (old&new buses)          |                             | 41,079 VMT/year <sup>(1)</sup> |
| Expected Years of Service per new bus                 |                             | 15 years <sup>(3)</sup>        |
| 1 - COST                                              | \$13,909,079 <sup>(1)</sup> |                                |

2 - EMISSIONS REDUCTION

| Type | Emissions Factor for Existing Buses, g/mi <sup>(2)</sup> | Emissions Factor for Proposed Buses, g/mi <sup>(2)</sup> | Emissions Factor Reduction, g/mi (difference) | Buses (above) | Annual VMT per bus (above) | Expected Years of Service per new bus (above) | Emissions Reduction, kg (product/ 1,000) |
|------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|---------------|----------------------------|-----------------------------------------------|------------------------------------------|
| VOC  | 6.08270                                                  | 0.65506                                                  | 5.42764                                       | 4             | 41,079                     | 15                                            | 13,378                                   |
| NOx  | 12.11861                                                 | 0.93580                                                  | 11.18281                                      | 4             | 41,079                     | 15                                            | 27,563                                   |

3 - COST EFFECTIVENESS

| Type | Cost (above) | Emissions Reduction, kg (above) | Cost Effectiveness, \$/kg (quotient) | Conversion Factor, kg/ton (fixed) | Cost Effectiveness, \$/ton (product) |
|------|--------------|---------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| VOC  | \$13,909,079 | 13,378                          | \$1,039.72                           | 907                               | <b>\$943,026</b>                     |
| NOx  | \$13,909,079 | 27,563                          | \$504.63                             | 907                               | <b>\$457,703</b>                     |

<sup>(1)</sup> From application

<sup>(2)</sup> NCHRP project 2525 task 108 toolkit (Excel, "NewTransitBusData" tab), based on these inputs:

model year (modelyearid) and fuel type (fueltypeid: gas[1], diesel[2], CNG[3], EV[9]) based on application;  
 analysis year (yearID=2030); road type (roadtypeid=5 [urban unrestricted access])

[The emissions factors on the prototype sheet (6.08, 0.655, 12.11, 0.93) came from the old (2020) calculation sheet.]

<sup>(3)</sup> Average retirement age of a 12-year bus is 15.1 years (Laver, et al. Useful Life of Transit Buses and Vans. FTA, 2007)